

CHEMICAL METROLOGY PROGRESS in GREECE

Kakoulidis E., Alexopoulos Ch., Georgopoulou A., Giannikopoulou P., Stathoudaki E., Sxoina V.

on behalf of
EXHM/GCSL-EIM
Chemical Metrology Laboratory
General State Chemical Laboratory, Athens

Chemical Metrology in Greece

Presentation layout

EXHM - chemical metrology

Documentation of CMCs

Reference materials

Proficiency testing

Supporting the State and Society

Hellenic Metrology Institute E.I.M. - Thessaloniki, 1994

Hellenic Metrology Institute (EIM)

- EIM was founded in 1994 as a legal entity under the Ministry of Industry and it is located in Thessaloniki.
- EIM in 2013 merged with Accreditation Body (ESYD) and Standardization Body (ELOT) into the umbrella organization, National Quality Infrastructure System (NQIS).
- EIM is supervised by the Ministry of Economy, Development & Tourism..

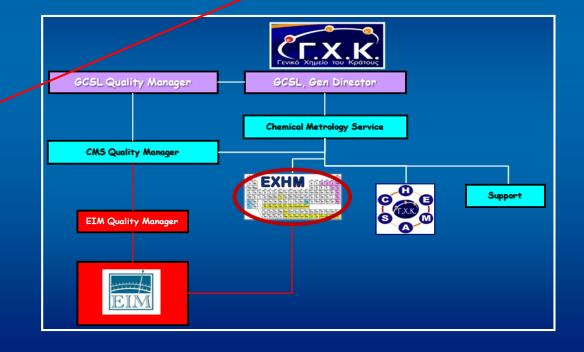
Hellenic Metrology Institute (EIM)

EIM operates the National Laboratories of Greece responsible for the realization of the SI units by the respective national standards, in the following fields:

- 1. Physical Measurements the Laboratories of Temperature & Humidity, Length & Dimensional Measurements, Acoustics & Vibrations.
- 2. Mechanical Measurements the Laboratories of Mass, Volume, Flow, Force and Pressure.
- 3. Electrical Measurements the Laboratories of Electrical Measurements at High Frequencies, Low Frequencies and Time Frequency.

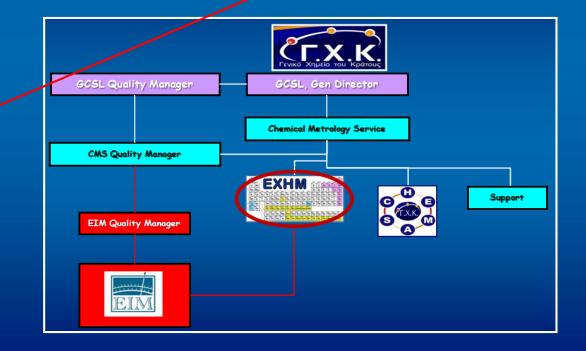
and has designated

- 1. IRCL/GAEC-EIM in Athens, in the premises of the Greek Atomic Energy Commission (GAEC) for Nuclear Metrology, and
- 2. EXHM/GC5L-EIM, in Athens, in the premises of the General Chemistry State Laboratories for Chemistry


Hellenic Metrology Institute E.I.M. – Thessaloniki, 1994

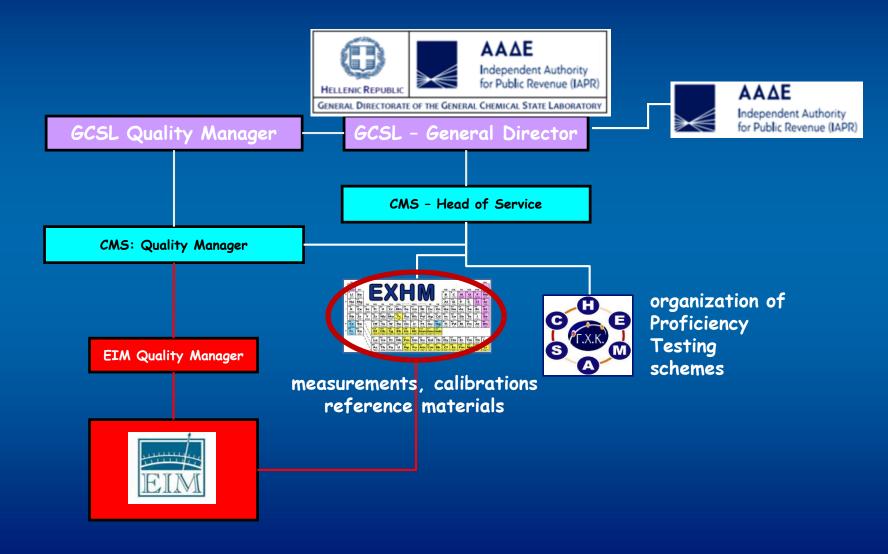
General State Chemical Laboratory G.C.S.L. - Athens, 1929

Hellenic Metrology Institute E.I.M. - Thessaloniki, 1994


EXHM was established by Greek law (N.3427/2005) in the 5th Athens Chemical Service, the newest GCSL division.

Its main responsibilities and its relationship to EIM are described in detail in Ministerial Decisions 3001148/687 and 3001149/688.

State Chemical Laboratory G.C.S.L. - Athens, 1929



Chemical Metrology Service - Organization chart

EXHM - major operational milestones

- GCSL installations are renovated in 2005-6 to house EXHM
- the lab was equipped between 2007-2008, partly by funding provided by the 2000-2006 Framework Programme of the European Union (under the "Competitiveness" action)
- was staffed in 2009
- has been providing calibration and testing services to customers since August 2010 as a GCSL section (5th Athens Chemical Service)
- implemented a QMS according to ISO 17025 and ISO 17043 in 2010.
- introduced ISO 17034 compliant clauses and procedures in 2011.
- accredited by ESYD as an interlaboratory testing provider since 2012.
- in 2013 the QMS was submitted to EURAMET TC-Q and was accepted without any revision
- accredited (March 2014) under flexible scope according to ISO/IEC 17025 for tests and calibrations.
- obtained flexible accreditation scope as a PT provider since 2016
- applied for ISO 17034 accreditation in 2016

MRA - Mutual Recognition Arrangement

Reconnaissance mutuelle

des étalons nationaux de mesure et des certificats d'étalonnage et de mesurage émis par les laboratoires nationaux de métrologie

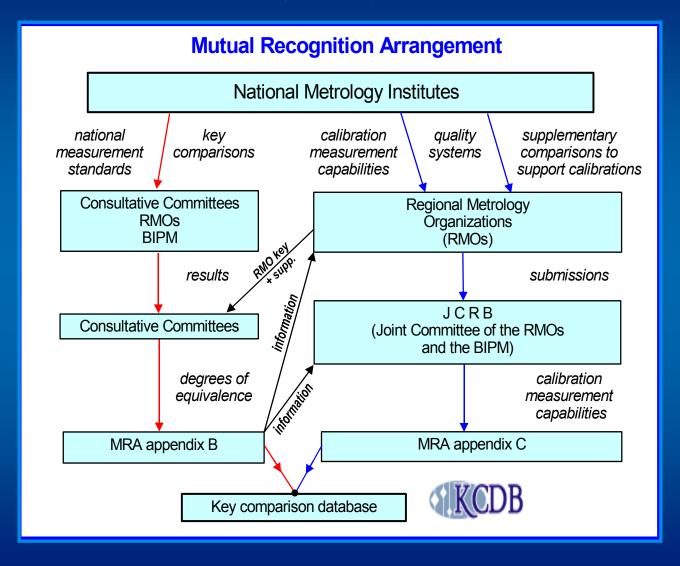
Paris, le 14 octobre 1999

Mutual recognition

of national measurement standards and of calibration and measurement certificates issued by national metrology institutes

Paris, 14 October 1999

Comité international des poids et mesures


international des poids Organisation intergouvernementale de la Convention

purpose

- to define the degree of equivalence between the measurement standards maintained by metrology institutes
- ensure the equivalence of the calibration certificates issued and the reference materials produced by metrology institutes
- the provision of a sound technical base for the development of agreements that support commercial and regulation policies between governments, organizations and/or social groups

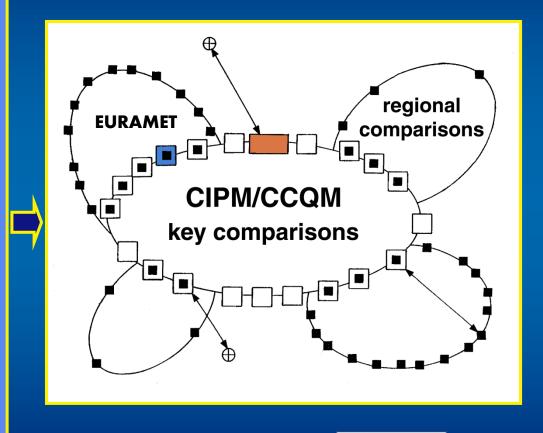
World-wide comparability of measurements

Key comparisons

NMI:

primary measurement systems + devices

primary reference materials



accredited calibration laboratories, reference laboratories

certified reference materials (CRMs)

chemical testing laboratories, which have to demonstrate their traceability (ISO 17025, ISO 15189)

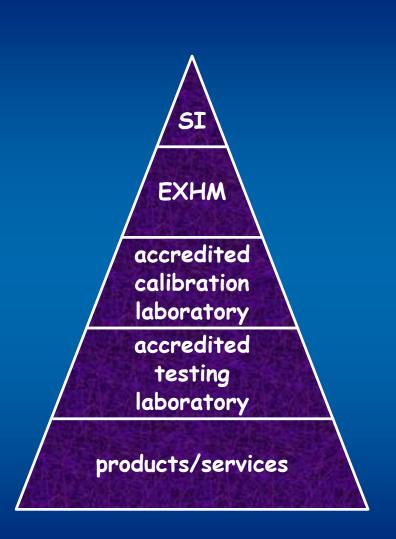
categories of key comparisons

Track A: model 1 (substances, calibration solutions, matrix materials)

Track B: model 2 (reference materials)

Track C: hot subjects - currents topics

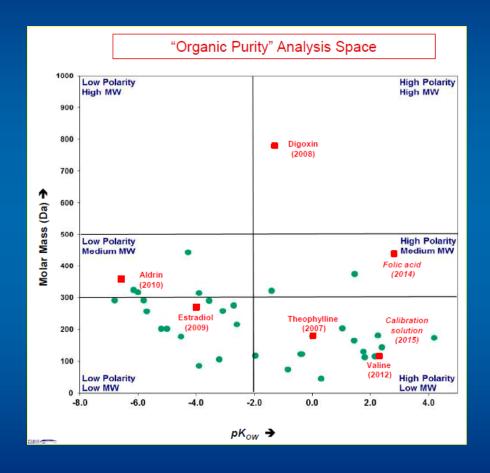
Track D: development of analytical procedures



E.XH.M.

traceability
international system of units - (SI)

mol (mole) quantity of substance



Responsibilities of EXHM

- a) Realization of the SI units by maintaining the national standards.
- b) Dissemination of measurement traceability to the metrological system in Greece.
- c) Support for the operation of the metrological system in Greece
- d) Representation of Greece in international metrology organizations and agreements
- e) Promotion of metrological knowledge
- f) Operation of calibration laboratories
- g) Technical Advisor of the Greek State in issues of metrology

Countless organic compounds

Primary reference methods

- CCQM (1995): Primary Reference Methods methods of the highest metrological accuracy, whose procedures can be described comprehensively and be fully understood, and a clear and complete uncertainty statement can be formulated in SI units
 - isotope dilution mass spectrometry (IDMS)
 - high resolution mass spectrometry (HRMS)
 - nuclear magnetic resonance (NMR) spectrometry
 - electrochemical methods (e.g. coulometry, voltammetry)
 - thermochemical methods
 - volumetric methods
 - weighing methods

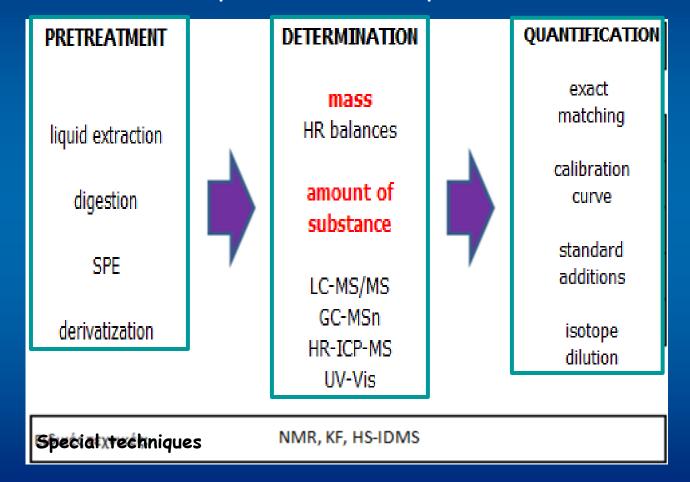
These methods are used for acquiring measurement results that are not related to a measurement standard for quantities of the same category (JCGM, 2008)

Basic equipment

ICP-HRMS

LC-MS/MS AM

GC-IT-MS


FT-Raman

FT-IR

EXHM/ГХК-EIM: flexible accreditation scope

determination of elements and organic compounds with advanced spectrometric techniques

Chemical Metrology Service - Quality Management System

E.XH.M.

ISO/IEC 17025:2005

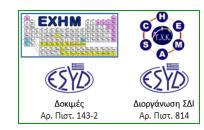
- flexible scope
- determination of organic compounds and elements with mass spectrometric techniques with emphasis on isotopic dilution

ISO 17034 (sic)

 design and production of certified reference materials (primary calibrators, calibration solutions, matrix materials for contaminants) S.CHE.M.A.

ISO/IEC 17043:2010

 proficiency testing schemes on: foodstuffs alcoholic drinks environmental samples industrial products


χρώμα σε στήλη υποδηλώνει ευελιξία

EXHM/ГХК-EIM: accreditation scope

EPFAETHPIO XHMIKHE METPONOFIAE (EXHM/FXK-EIM)

and the section of the section of the section of the section of the sec	(EXHM/I XK-EIM)
με το ίδιο χρώμα ανήκουν στην ίδια ευθλικτη μέθοδο	ΚΑΤΑΛΟΓΟΣ ΔΙΑΠΙΣΤΕΥΜΕΝΏΝ ΔΙΑΔΙΚΑΣΙΏΝ

					10111410104					
A/A	KOAIKOE	KATEPFAZIA	TEXNIO	YTIOETPOMA	XAPAKTHPETIKA ANAAYTON	EMOE YNOETPOMATOE	ANAAYTEI	NOMBEZ	ATTO	EGE
27 01	XTR-LCMS-EM	σιας, στορής φάσης	LC-MS/MS	τρόφιμα & ποτά	puravole/muoluvole	уайсктонозака	μελαμίνη	798/2008/EK	01-07-2012	31401-2012
27 02	XTR-LCMS-EM	ειςς, υγρού-υγρού	LC-MS/MS	τρόφιμα & ποτά	πρόσθετα	gupol sas notă	Sevijalioù adjû	882/2004/EK	01-07-2012	31-01-2012
27 03	XTR-LCMS-ES	emple:	LC-MS/MS	αλκοόλη και αλκ. υγρά	μετουσιωτικά διαλυτών	αλκοδλη & αλκ. υγρά	DITREX	160/2013/08	01-07-2012	31-01-2012
27 04	DIG-ICPMS-ES	xapla.	LC-MS/MS	vepå	μέταλλα	πόσιμα δι επιφανειακά νερά	ALAGRANACO, CO, Cr, Cu, Fe, Mn, NI, Pb, Sb, Se, Sn, Zn	ORK1977/B/2011	01-07-2012	31-01-2012
27 05A	XTR-GCMS-ID	ειαχ. υγραύ-υγραύ	GC-IT-MS	αλκοόλη και αλκ. υγρά	μετουσιωτικά διαλυτών	akošką, akc vypž	φθαλικοί εστέρες (διμεθυλ, διακθυλ, δι-ισοβουτυλ, διβουτυλ,	882/2004/EK	01-07-2012	31-03-2013
27 05A	XTR-GCMS-ID	σιας, στορής φάσης	GC-IT-MS	трёфция	ρυπανελς/επιμολυνελς	eSú-Sum Alaum	βενζυλβουτυλ, δε(2-αιθυλ)εξυλ, διοκτυλ, διασσενυλ, διασδεκυλ)	882/2004/EK	01-07-2012	31-03-2013
27 06	XTR-UWb-ECL	ειαχ. υγραύ-υγραύ	UV-VIs	νερά & απόβλητα	μέταλλα	νερά & απόβλητα	εξασθενές χρώμιο	GEK1977/B/2011	01-07-2012	31-03-2013
27 07	1504-LOMS-ECL	μετανάστευση	LC-MS/MS	προσομοιωτές FCM	μη πτητικά οργανικά μόρια	υδατικοί προσομοωπές	aviling 4,4'-pethilevoliavilles, o-tolausting	882/2004/EE	01-07-2012	31-12-2012
27 08A	DIG-ICPMS-SA	χώνευση	HR-ICP-MS	τρόφιμα & ποτά	péralka	τρόφιμα με υψηλή περ. νερού	Pb/Fe/Cu/Cd	333/2007/88	01-m-20m	31-12-2012
27 08B	DIG-ICPMS-SA	χώνευση	HR-ICP-MS	τρόφιμα & ποτά	μέταλλα	κρέστα & χθυρά	Fe/Cd	1010/20019/100	01-m-30m	31-12-2012
27 OSF	DIG-ICPMS-SA	χώνευση	HR-ICP-MS	τρόφιμα & ποτά	péralka	auBavčka	Cu	101/2007/10	01-11-3011	31-12-2012
27 086	DIG-ICPMS-SA	χώνευση	HR-ICP-MS	τρόφιμα & ποτά	μέταλλα	τρόφιμα με υψηλά σάκχαρα	Cr Cr	1010/20019/100	01-11-3011	31-12-2012
27 ORE	DIG-ICPMS-SA	χώνευση	HR-ICP-MS	τρόφιμα & ποτά	phralika	Squqtpraxá	Cd, Cr, Cu, Pb	333/2007/EK	01-m-30m	31-12-2012
27 09	XTR-LCMS-ECL	εις, στερής φάσης	LC-MS/MS	τρόφιμα & ζωστροφές	pusorolisec	кадартов.	δεσοξυνφαλενόλη, νιβαλενόλη	401/2006/EE	01-12-20TI	31-03-2012
27 10	XTR-LOMS-ES	εις, στερής φάσης	LC-MS/MS	τρόφιμα ζωικής προέλευσης	μη στεροειδή αντιφλεγμονώδη	κρέας δι προλύντα του	φαινυλοβουταζόνη	657/2002/EK	01-03-2013	22-09-2013
27 11	GOM5-ID	emple.	GC-IT-MS	αλικοόλη	μετουσιωτικά διαλυτών	αλκοόλη, αλκ. υγρά	μεθυλοαιθυλοκπόνη (ΜΕΚ)	162/2013/EE	01-10-2013	30-11-2013
27 12	XTR-LCMS-ES	εις, στερής φάσης	LC-MS/MS	τρόφιμα & ζωστροφές	pusorolisec	карияй рата, фиотіка	αφλατοξίνη B1, B2, G1, G2, ωχρατοξίνη Α	401/2006/EE	01-06-2014	30-12-2014
27 13	XTR-LCMS-EM	εις, στερής φάσης	LC-MS/MS	τρόφιμα & ποτά	ρυπαντές/επιμολυντές	αρτοσκευάσματα, αλεύρι	ακρυλαμίδιο	REC 2013/647/EU	01-04-2014	31-05-2014
27 14	XTR-LCMS-ECL	мах, и урай-и урай	LC-MS/MS	τρόφιμα & ζωστροφές	pu sorol(lier;	φυστίκι καλυφωτό	adpharro(firq B1, B2, G1, G2	401/2006/00	01-10-2014	31-12-2014
27 15	XTR-LCMS-ECL	ειας, υγρού-υγρού	LC-MS/MS	τρόφιμα & ζωστροφές	μη στεροειδή αντιφλεγμονώδη	γάλα	αμινοαντατυρίκη, 4-μεθυλαμινοαντατυρίκη, νατιροξέκη, διαλοφαικάτη, ικτοπροφαίκη, οξυφαικιλήσυπαζόκη, φαινιλήσυπαζόκη, μελοξικάμη, φλαυνεζίκη, 5-υδροξυφλουνεζίκη, μεφαικαμικό οξύ, πολφαιναμικό οξύ	27/2010/EE	01-10-2014	31-12-2014
27 16	XTR-LOMS-ECL	ειας, υγρού-υγρού	LC-MS/MS	τρόφιμα & ζωστροφές	μη στεροειδή αντιφλεγμονώδη	κρέας	αμινοαντιπερίνη, 4-μεθελαμενοαντιπερίνη, ναπροξένη, διελοφαινάκη, επιπεροφαίνη, καρπροφαίνη, οξυφαινελβουταζόνη, φαινελβουταζόνη, μελοξικάμη, φλουνεζόνη, μεφαιναμικό οξύ, τολφαιναμικό οξύ	37/2010/IE	01-10-2014	31-12-2014
27 17	XTR-LCMS-ECL	εις, υγρού-υγρού	LC-MS/MS	τρόφιμα & ζωστροφές	μυκοτο(hec	γάλα	aфkaro(lvg M1	401/2006/EE	01-10-2014	31-12-2014
			LC-MS/MS	tpôdesa	μη πτητικά οργανικά μάρια					
			GC-IT-MS	Tobbus	πετικά οργανικά μόρια					
			LCAMS/MS	TOO TOO THE STATE OF THE STATE	un erreruch communit subcure					

ΕΚΔΟΣΗ: 5 - HM/NIA: 31.01.2016 ΥΠΕΥΘΥΝΟΣ: Δ27/ΥΠ C:\XYMET\XYMET-QMS\c27 11 - V14 - MASTER FILE.xisx ΠΑΡ-Ι 25GR Σελίδα 1 από 1

ILAC P10 - policy for the traceability of measurement results

ILAC Policy on the Traceability of Measurement Results

ILAC P10:01/2013

ILAC POLICY FOR TRACEABILITY COVERED BY THE ILAC ARRANGEMENT IN CALIBRATION

The general requirement for traceability in ISO/IEC 17025:2005 is:

5.6.1 All equipment used for tests and/or calibrations, including equipment for subsidiary measurements (e.g. for environmental conditions) having a significant effect on the accuracy or validity of the result of the test, calibration or sampling shall be calibrated before being put into service.

It is an obligation of the laboratory to justify the need for calibration. In ISO/IEC 17025:2005, the further traceability requirement for calibration laboratories is:

5.6.2.1.1 For calibration laboratories, the programme for calibration of equipment shall be designed and operated so as to ensure that calibrations and measurements made by the laboratory are traceable to the International System of Units (SI) (Système international d'unités).

For reference standards the traceability requirements of ISO/IEC 17025:2005 are:

5.6.3.1 The laboratory shall have a programme and procedure for the calibration of its reference standards. Reference standards shall be calibrated by a body that can provide traceability as described in 5.6.2.1. Such reference standards of measurement held by the laboratory shall be used for calibration only and for no other purpose, unless it can be shown that their performance as reference standards would not be invalidated. Reference standards shall be calibrated before and after any adjustment.

In order to maintain traceability in calibration programmes, guidance can be found in ILAC G24:2007 [4] "Guidelines for the determination of calibration intervals of measuring instruments.

ILAC P10 - policy for the traceability of measurement results

Clause 5.6.2.1.1 in ISO/IEC 17025:2005 further states that "When using external calibration services, traceability of measurement shall be assured by the use of calibration services from laboratories that can demonstrate competence, measurement capability and traceability". For equipment and reference standards that must be calibrated, the ILAC policy is that they shall be calibrated by:

 An NMI whose service is suitable for the intended need and is covered by the CIPM MRA. Services covered by the CIPM MRA can be viewed in Appendix C of the BIPM KCDB which includes the range and uncertainty for each listed service.

Note 1: Some NMIs may also indicate that their service is covered by the CIPM MRA by including the CIPM MRA logo on their calibration certificates, however the fixing of the logo is not mandatory and the BIPM KCDB remains the authoritative source of verification.

Note 2: NMIs from Member States participating in the Metre Convention may take traceability directly from measurements made at the BIPM. The KCDB provides an automatic link to the relevant BIPM calibration services (including the range and uncertainty). Individual calibration certificates issued by the BIPM are also listed.

٥

 An accredited calibration laboratory whose service is suitable for the intended need (i.e, the scope of accreditation specifically covers the appropriate calibration) and the Accreditation Body is covered by the ILAC Arrangement or by Regional Arrangements recognised by ILAC.

Note: Some calibration laboratories indicate that their service is covered by the ILAC Arrangement by including the ILAC Laboratory Combined MRA mark on the calibration certificate. Alternatively, the accreditation symbol of the accreditation body that is a signatory to the ILAC Arrangement and/or a recognised regional MLA may be included on the calibration certificate. Both of these options may be taken as evidence of traceability.

Of

3a) An NMI whose service is suitable for the intended need but not covered by the CIPM MRA. In this case the accreditation body shall establish a policy to ensure that those services meet the relevant criteria for metrological traceability in ISO/IEC 17025:2005. 3b) A calibration laboratory whose service is suitable for the intended need but not covered by the ILAC Arrangement or by Regional Arrangements recognised by ILAC. In these cases the accreditation body shall establish a policy to ensure that those services meet the relevant criteria for metrological traceability in ISO/IEC 17025:2005.

Laboratories that have demonstrated traceability of their measurements through the use of calibration services offered according to 1) or 2) above have made use of services that have been subject to relevant peer review or accreditation. In the situation where 3a) or 3b) applies, this is not the case, so these routes should only be applicable when 1) or 2) are not possible for a particular calibration. The laboratory must therefore ensure that appropriate evidence for claimed traceability and measurement uncertainty is available and the accreditation body shall assess this evidence. Further guidance is found in Annex A.

Clause 5.6.2.1.2 of ISO/IEC 17025:2005, states:

There are certain calibrations that currently cannot be strictly made in SI units. In these cases calibration shall provide confidence in measurements by establishing traceability to appropriate measurement standards such as:

- the use of certified reference materials provided by a competent supplier to give a reliable physical or chemical characterization of a material;
- the use of specified methods and/or consensus standards that are clearly described and agreed by all parties concerned.

Participation in a suitable programme of inter laboratory comparisons is required where possible.

The ILAC Policy is:

4) Clause 5.6.2.1.2 can only be applied in the case in which the laboratory has demonstrated that the policy 1) to 3) cannot reasonably be met. It is the responsibility of the laboratory to choose a way to satisfy 5.6.2.1.2 and to provide the appropriate evidence. This evidence shall be documented and the documentation shall be assessed by the accreditation body.

Of

traceability

ISO/IEC 17025:2005(E)

5.6 Measurement traceability

561 Ceneral

5.6.2.1 Calibration

5.6.2.1.1 For calibration laboratories, the programme for calibration of equipment shall be designed and operated so as to ensure that calibrations and measurements made by the laboratory are traceable to the International System of Units (SI) (*Système international d'unités*).

A calibration laboratory establishes traceability of its own measurement standards and measuring instruments to the SI by means of an unbroken chain of calibrations or comparisons linking them to relevant primary standards of the SI units of measurement. The link to SI units may be achieved by reference to national measurement standards. National measurement standards may be primary standards, which are primary realizations of the SI units or agreed representations of SI units based on fundamental physical constants, or they may be secondary standards which are standards calibrated by another national metrology institute. When using external calibration services, traceability of measurement shall be assured by the use of calibration services from laboratories that can demonstrate competence, measurement capability and traceability. The calibration certificates issued by these laboratories shall contain the measurement results, including the measurement uncertainty and/or a statement of compliance with an identified metrological specification (see also 5.10.4.2).

ent for subsidiary measurements (e.g. for racy or validity of the result of the test, o service. The laboratory shall have an ment

using, calibrating, checking, controlling and surement standards, and measuring and test

tion of equipment shall be designed and de by the laboratory are traceable to the

nent standards and measuring instruments parisons linking them to relevant primary hay be achieved by reference to national pe primary standards, which are primary sed on fundamental physical constants, or by another national metrology institute. The remember of the use of mpetence, measurement capability and sphall contain the measurement capability and sphall contain the measurement results.

traceability. The calibration certificates issued by these raporationes shall contain the measurement results, including the measurement uncertainty and/or a statement of compliance with an identified metrological

5.6.2.2 Testing

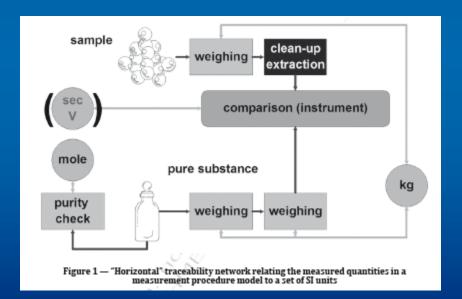
5.6.2.2.1 For testing laboratories, the requirements given in 5.6.2.1 apply for measuring and test equipment with measuring functions used, unless it has been established that the associated contribution from the calibration contributes little to the total uncertainty of the test result. When this situation arises, the laboratory shall ensure that the equipment used can provide the uncertainty of measurement needed.

ered to be lited to this reported.

ry standard known and for Weights

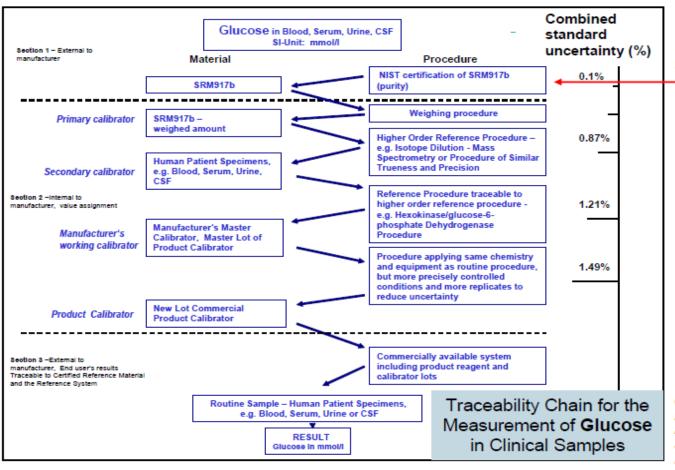
based on compared,

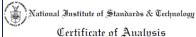
NOTE 4 The term "identified metrological specification" means that it must be clear from the calibration certificate which specification the measurements have been compared with, by including the specification or by giving an unambiguous reference to the specification.



traceability

"Traceability of an RM"
is in common and daily use, it is understood throughout as the traceability of the quantity value assigned to a (certified) reference material.
 "(Analytical) method"
is used in the sense of defining the instrumental implementation of the (most often physical) principle of obtaining, from an appropriately pre-processed and/or transformed object under





Traceability chain

997 ± 3 mg/g

Standard Reference Material® 917c

D-Glucose (Dextrose)

This Standard Reference Material (SRM) is certified as a chemical of known purity. It is intended primarily for use in the calibration and standardization of procedures for glucose determinations employed in clinical analysis, and for routine critical evaluation of the daily working standards used in these procedures. A unit of this SRM consists

Certified Purity and Uncertainty: A NIST Certified Value is a value for which NIST has the highest confidence Certains rules and intercement, a description of the state of the stat

Certified Purity of p-Glucose as a Mass Fraction: 99.7% ± 0.3%

The uncertainty in the certified value is expressed as an expanded uncertainty. U, at the 95 % level of confidence The uncerturny in the certified value is expressed as in expansion uncerturny, U, at the 99 N series of continence, and is calculated according to the method described in the 150 Guide [4,3]. The expansion currently is calculated as U=0.6, where u, is intended to represent, at the level of one standard deviation, the uncertainty in the measurement of the impurities. The coverage factor, k=2, is determined from the Studien's redistribution corresponding to the appropriate degrees of freedom and approximately 95 N confidence. Expiration of Certification: The certification of SRM 917c is valid, within the measurement uncertainty

specified, until 01 March 2014, provided the SRM is handled in accordance with instructions given in this certificate (see "Instructions for Use"). The certification is mullified if the SRM is damaged, contaminated, or

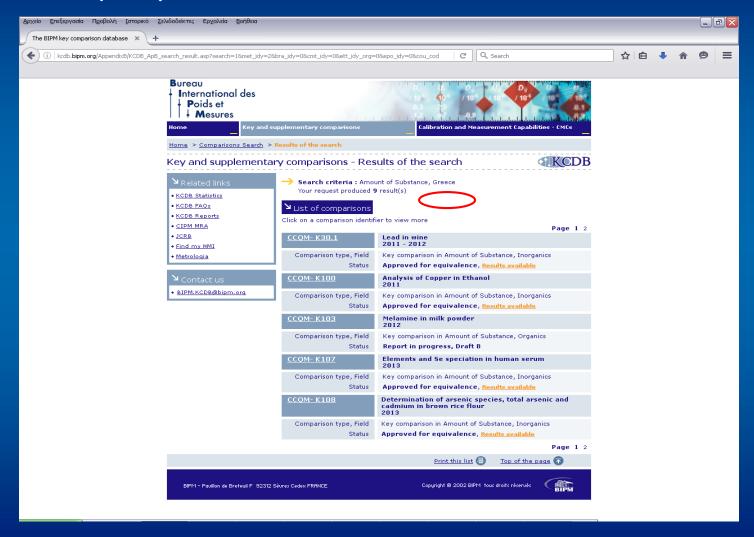
Maintenance of SRM Certification: NIST will monitor this SRM over the period of its certification. If substantive technical changes occur that affect the certification before the expiration of this certificate, NIST will notify the purchaser. Registration (see attached sheet) will facilitate notification.

The overall direction and coordination of the technical measurements leading to certification was performed by

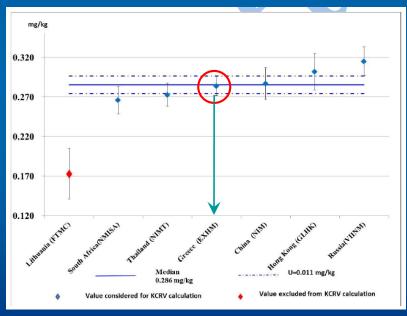
Analytical measurements were performed by D.W. Bearden, B.J. Porter, M.M. Schantz, L.T. Stiegotki, and M.J. Welch of the NIST Analytical Chemistry Division, and B.E. Lang of the NIST Biochemical Science Division.

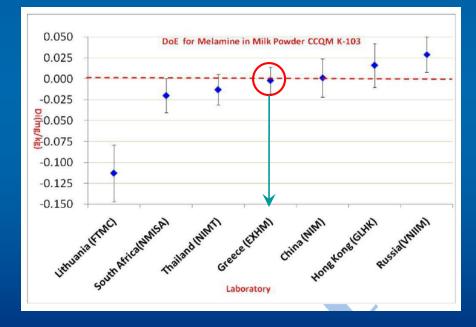
Statistical analysis of data was provided by N.F. Zhang of the NIST Statistical Engineering Division.

Support aspects involved in the issuance of this SRM were coordinated through the NIST Measurement Services


Gaithersburg, MD 20899 Certificate Issue Date: 30 hine 2009 Robert L. Watters, Jr., Chief

SRM 917c


BIPM-KCDB: key comparisons



EXHM/ГХК-EIM CMCs: melamine in milk powder

EXHM/ГХК-EIM CMCs: melamine in milk powder

Hong Kong, China, GL (Government Laboratory) Complete CMCs in Chemistry for High purity chemicals for Hong Kong, China (.PDF file)									
			ation range of ment capability	Range of certified values in reference materials					
Matrix or material	Analyte or component	Mass fraction in mg/g	Relative expanded uncertainty (k = 2, 95%) in %	Mass fraction in mg/g	Absolute expanded uncertainty (k = 2, 95%) in %				
high purity		050 to 1000	0.5	050 to 1000	0.5				

Mechanism(s) for measurement service delivery: CRM GLHK-01-01

Approved on 06 December 2011.

Internal NMI service identifier: GL/GLHK027

Greece, EXHM/GCSL-EIM (National Laboratory of Chemical Metrology/GCSL -Hellenic Institute of Metrology)

Complete CMCs in Chemistry for Food for Greece (.PDF file)

Hong Kong, China, GL (Government Laboratory) Complete CMCs in Chemistry for Food for Hong Kong, China (.PDF file)									
		nation range of ment capability	Range of certified values in reference materials						
Matrix or material	Analyte or component	Mass fraction in mg/kg	Relative expanded uncertainty (k = 2, 95%) in %	Mass fraction in mg/kg	Absolute expanded uncertainty (k = 2, 95%) in mg/kg				
milk and	melamine	0.1 to 5	6 to 8	1.15	0.08				

Mechanism(s) for measurement service delivery: Certified reference material (GLHK-11-02)

Uncertainty convention 1. Approved on 19 June 2014.

milk product

Internal NMI service identifier: GL/GLHK050

Thailand, NIMT (National Institute of Metrology (Thailand))

Complete CMCs in Chemistry for Food for Thailand (.PDF file)

Dissemination range of measurement

Matrix or ma

milk and produc

Mechanism(s) materials, PT Uncertainty co Approved on Internal NMI s

South Africa, Complete CM

Matrix or ma

infant form

Uncertainty co Approved on : Internal NMI s

Russian Fede Complete CM0

> Matrix or material

Greece, EXHM/GCSL-EIM (National Laboratory of Chemical Metrology/GCSL -Hellenic Institute of Metrology)

Complete CMCs in Chemistry for Food for Greece (.PDF file)

		Dissemination range of measurement capability			
Matrix or material	Analyte or component	Mass fraction in mg/kg	Relative expanded uncertainty (k = 2, 95%) in %		
milk and milk products	melamine	0.015 to 5	3 to 10		

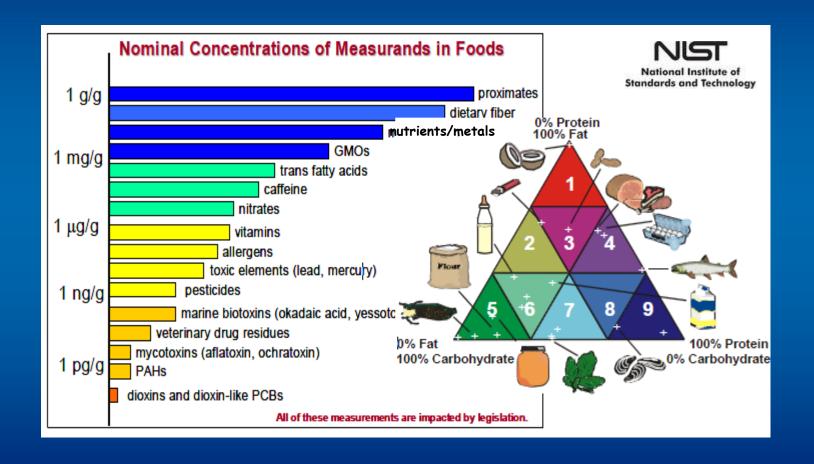
Mechanism(s) for measurement service delivery: Provision of reference value for client materials, PT samples and reference materials Uncertainty convention 1.

Approved on 19 June 2014.

Internal NMI service identifier: EXHM/GCSL-EIM/EXHM 11201

Mechanism(s) for measurement service delivery: Calibration service Approved on 19 June 2014. Uncertainty convention 2.

Fraction in uncertainty Fraction in uncertainty (k = 2, 95%) in (k = 2, 95%) in a/a g/g

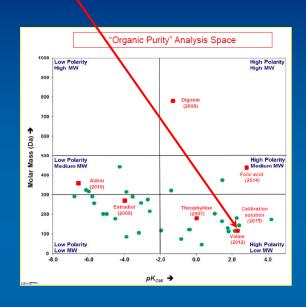


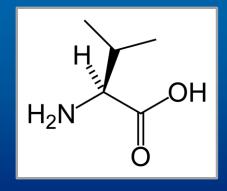
Key comparisons: OAWG plan

Overall Status of OAWG Comparisons Final Protocol Measurements OAWG Agreed Protocol Samples Provisional Discussion Draft A Draft B Report sent to Report on Distributed Distributed Complete Report at WG Report WG chairs K55.a organic Purity Assessment - Estradiol K55.b rganic Purity Assessment - Aldrin K95 esticides in Tea K55.c Organic Purity Assessment - L-Valine K102 Brominated Flame Retardants in Sediment K95.1 PAHs in tea K131 PAHs in organic solution K109 Urea-uric acid in serum K55.d Organic Purity Assessment- Folic acid K141 intibiotics in meat K78.a mino acids in aqueous solution K146 AHs in olive oil K148.a rganic Purity Assessment - Bisphenol A Track B K79 Ethanol in Aqueous Solution K80 Creatinine in Serum K142 Urea-uric acid in serum and plasma K147 Niacin in milk powder/infant formula K81 Chloramphenicol in Pig Muscle K85 Malachite Green in Salmon K6.2 Cholesterol in Serum K11.2 Glucose in Serum K12.2 Creatinine in Serum Melamine in Milk K103 K104 Avermectin purity K126 Carbamazepine in surface water K132 Vitamin D in serum K133 Phthalates in PVC K138 Aflatoxins in fig P150 Data acquisition and process in qNMR method P150.b Data acquisition and process in qNMR method P164 luman growth hormone in serum

measurements: infinite combinations of «substances» and «substrates»

year	comparison	subject	analytical technique
2011	AFRIMETS-QM.K27	ethanol in water	GC-IDMS/MS
2012	EURAMET-QM.K12	creatinine in blood serum	LC-IDMS/MS
2012	CCQM-K30.1	heavy metals in wine	HR-ICP-IDMS
2013	CCQM-K100	copper in bioethanol	HR-ICP-IDMS
2013	CCQM-K103	melamine in milk powder	LC-IDMS/MS
2013	CCQM-K55c	purity of organic compunds: valine	MB, qNMR
2013	APMP-QM.S5	heavy metals in fish tissue	HR-ICP-MS
2013	APMP-QM.S6	β-agonists in meat	LC-IDMS/MS
2014	CCQM-K104	purity of organic compunds: avermectin B1a	MB
2014	CCQM-K107	heavy metals in flour	HR-ICP-IDMS
2014	CCQM-K108	heavy metals in blood serum	HR-ICP-IDMS
2015	CCQM-K124	heavy metals in infant formula	HR-ICP-MS
2015	CCQM-K125	heavy metals and hexavalent chromium in potable w	HR-ICP-IDMS
2015	CCQM-K126	carbamazepine in water	LC-IDMS/MS
2015	APMP-QM.S8	preservatives in soy sauce	LC-IDMS/MS
2015	CCQM-P150	purity of organic compunds: dimethylsulfone	qNMR
2016	CCQM-K95.1	PAHs in tea	GC-IDMS/MS
2016	CCQM-K131	calibrants - PAHs in calibration solutions	GC-IDMS/MS
2016	CCQM-K138	aflatoxins in dried figs	LC-IDMS/MS
2016	SIM-QM.K27	ethanol in water	GC-IDMS/MS
2016	SIM-QM.S7	heavy metals in surface water	HR-ICP-IDMS
2017	CCQM-K141	antibiotics in meat	LC-IDMS/MS
2017	CCQM-K78	calibrants - amino acids in calibration solutions	LC-IDMS/MS
2017	CCQM-K55.1a	purity of organic compunds: bisphenol A	MB, qNMR


Key comparison CCQM-K55c: Determination of Valine Purity


purpose

to demonstrate capability in the estimation of the purity of low molecular weight and high polarity organic compounds and thus the ability to produce primary calibrants for similar materials

two analytical pathways

- 'mass balance' approach (BIPM-NIST)
 - > structure-related impurities
 - > non-volatile components
 - > volatile components
 - > water
- quantitative ¹H NMR (BAM)

a. mass balance approach

experimental approach:

- related structure impurities
 LC-MS/MS screening for residual amino acids (SIELC Primesep 100)
 determination by standard additions of NIST 2389a
- water content
 Karl Fischer coulometric titration (oven)
- residual organic solvents / volatile matter headspace GC-MS
- non-volatiles / inorganics
 ion chromatography for major anions/cations
 HR-ICP-MS for other elements (after mw-assisted acid digestion)

a. mass balance approach

valine mass fraction = $992.5 \pm 0.6 \text{ mg/g}$

- related structure impurities: 6.3±0.4 mg/g

alanine: $2.6 \pm 0.2 \text{ mg/g}$

leucine: $1.8 \pm 0.3 \text{ mg/g}$

isoleucine: $1.9 \pm 0.3 \text{ mg/g}$

- water content


 $1.2 \pm 0.5 \, \text{mg/g}$

- residual organic solvents / volatile matter
 not observed (<LOD)
- non-volatiles / inorganics

<0.1 mg/g

HR-ICP-MS for other elements (after mw-assisted acid digestion)

impurity	S	NH ₄	Ca	Fe	Na
μg/g	8,3	7,6	4,6	1,7	1,0

a. mass balance approach

$$w_{val} = 1000 \; x \; (1 - w_{SRI} - w_{H2O} - w_{vol} - w_{in})$$

uncertainty estimation

- related structure impurities

Ala de	termination					
uncert	ainty component	value	units	uncertainty	rel uncertainty	squared RU
regres	sion	2,58	mg	0,0864	3,349E-02	1,121E-03
mass o	f spike solution	0,090	g	1,312E-05	1,457E-04	2,124E-08
sample	e mass	0,950	g	4,004E-05	4,214E-05	1,776E-09
spike r	nass fraction	12,37	μg g ⁻¹	0,1900	1,536E-02	2,359E-04
relativ	relative standard uncertainty					
combin	ned standard uncertainty					0,09506
expand	ded uncertainty (k=2)					0,19011

Leu determination						
uncertainty component	value	units	uncertainty	rel uncertainty	squared RU	
regression	1,83	mg	0,1406	7,683E-02	5,903E-03	
mass of spike solution	0,090	g	1,312E-05	1,457E-04	2,124E-08	
sample mass	0,950	g	4,004E-05	4,214E-05	1,776E-09	
spike mass fraction	17,38	μg g ⁻¹	0,4090	2,353E-02	5,538E-04	
relative standard uncertainty						
combined standard uncertainty					0,14705	
expanded uncertainty (k=2)					0,29410	

Ile determination					
uncertainty component	value	units	uncertainty	rel uncertainty	squared RU
regression	1,92	mg	0,1238	6,448E-02	4,158E-03
mass of spike solution	0,090	g	1,312E-05	1,457E-04	2,124E-08
sample mass	0,950	g	4,004E-05	4,214E-05	1,776E-09
spike mass fraction	17,438	μg g ⁻¹	0,3810	2,185E-02	4,774E-04
relative standard uncertainty					
combined standard uncertainty					0,13071
expanded uncertainty (k=2)					0,26143

- water content (KF titration)

KF uncertainty budget					
uncertainty component	value	units	uncertainty	rel uncertainty	squared RU
determination repeatability	1,2	mg g ⁻¹	0,2314	1,928E-01	3,718E-02
sample mass	0,0600	g	0,0001	2,030E-03	4,120E-06
relative standard uncertainty					0,19284
combined standard uncertainty					0,23141
expanded uncertainty (k=2)			0,46283		

b. qNMR approach: ¹H NMR using maleic acid as IS

mass determination:

in-house mass calibration with E1 class standard weights balance capable of 0.1 µg resolution

accurate weighing of sample and internal standard with uncertainties of 0.01%

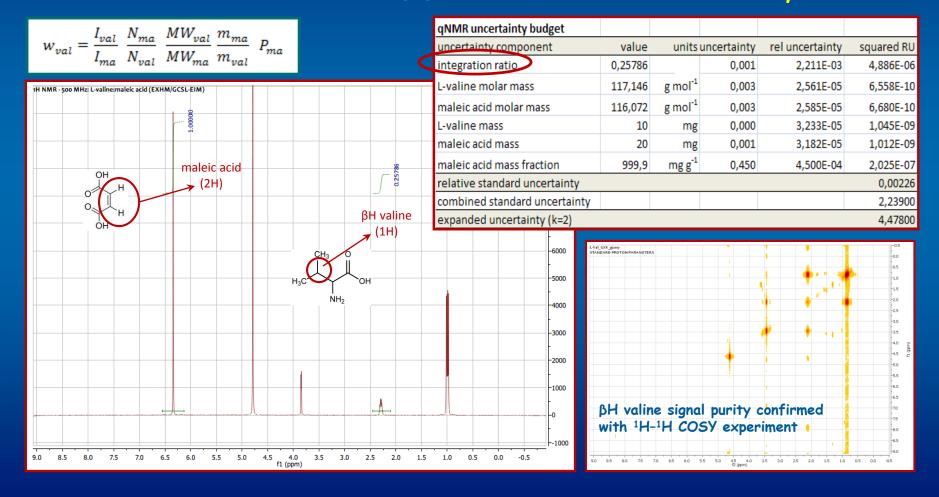
NMR experiment:

dilution in 99.99% D₂O, T= 300 K

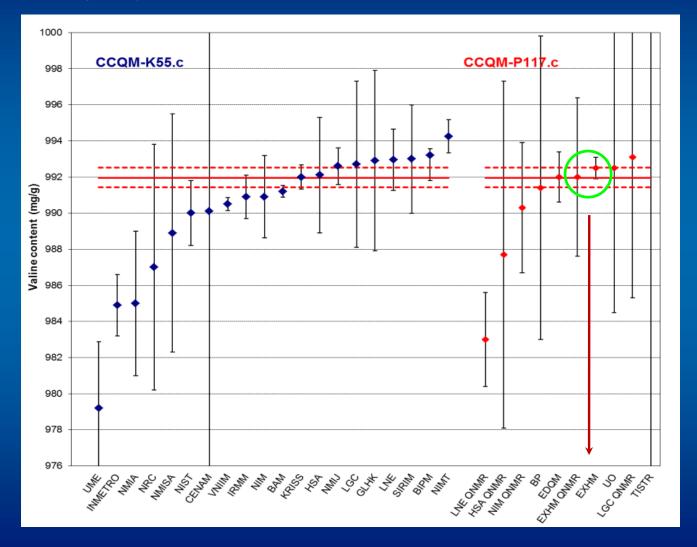
T1 and d1 determination for sample and IS in separate NMR experiments

the NMR spectra were recorded on a Bruker 500 MHz Avance DRX spectrometer

determination of repeatability in six separate NMR experiments

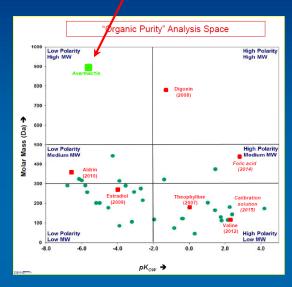


b. qNMR approach


valine mass fraction = 992.0±2.2 mg/g

uncertainty estimation

results: valine purity


CCQM.K104: purity determination of avermectin B_{1a}

purpose

to document the capability of purity determination of organic compounds with high molecular weight and low polarity and thus characterize calibrants of similar structure

Analytical approach

- Mass balance
 - > structural related impurities
 - > non-volatiles
 - > volatile mater
 - > water

CCQM.K104: purity of avermectin B_{1a}

mass balance approach

experimental procedure:

- structural related impurities

 HPLC-UV and LC-MS/MS for identification

 % composition via HPLC UV
 - water
 Karl Fischer coulometric titration (oven)
- residual solvents volatile material
 GC-FID and/or GC-MS
- non volatiles / inorganics
 ion chromatography for main anions/cations
 HR-ICP-MS for other elements

CCQM.K104: purity of avermectin B_{1a}

- Structural related impurities: 47,1 ± 0,3 mg/g

 $26,2 \pm 0,2 \text{ mg/g}$ **A**_{B1b}:

 $6,2 \pm 0,1 \, \text{mg/g}$ A_{A1a} :

 A_{A2a} : $4.2 \pm 0.1 \, \text{mg/g}$

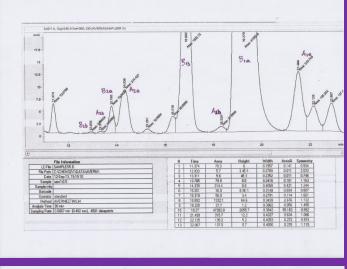
 A_{A1b} : $0.5 \pm 0.1 \, \text{mg/g}$

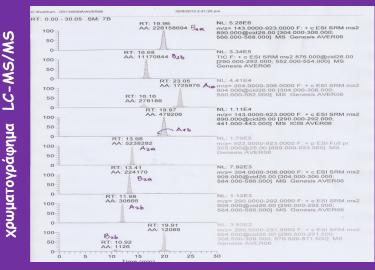
 $1,6 \pm 0,1 \text{ mg/g}$ A_{B2a} :

- water

 $20,6 \pm 1,0 \text{ mg/g}$

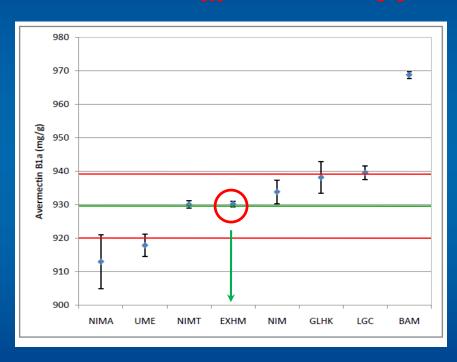
- residual solvents / volatiles

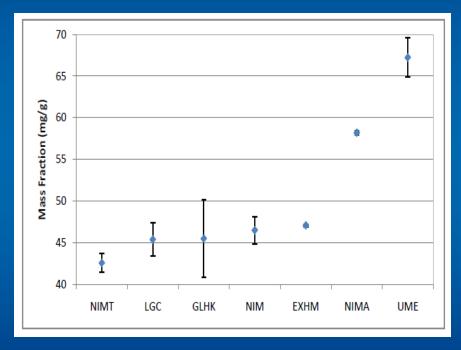

 $0.10 \pm 0.07 \, \text{mg/g}$


- non volatiles / inorganics

 $2.0 \pm 0.4 \text{ mg/g}$

LC-MS/MS

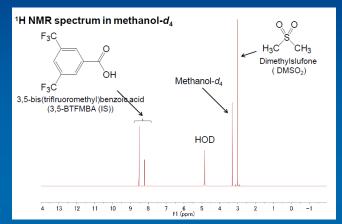


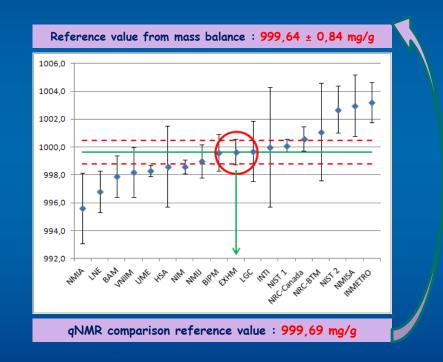


CCQM.K104: purity of avermectin B_{1a}

mass fraction A_{B1g} = 930,3 ± 1,6 mg/g

structurally related impurities: 47,1±0,3 mg/g

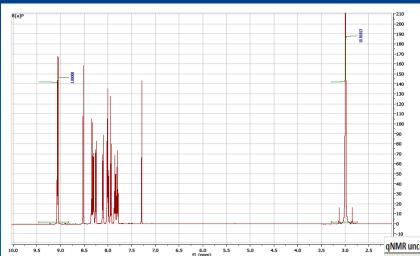

Reference value $A_{\rm B1a}$ = 929,0 ± 10,0 mg/g


Track D: development of analytical procedures

International comparison on qNMR

συνιστώσα αβεβαιότητας	πμή	μονάδα	u _i	u _i /x _i	Ci	C _i u _i	(C _i u _i) ²
λήψη & επεξεργασία φάσματος			0,00075		1	0,00075	5,658E-07
προετοιμασία δείγματος			0,00047		1	0,00047	2,216E-07
λόγος σημάτων DMSO₂/BTFMBA	0,9984		0,00089	6,790E-04	1001,23	0,88844	7,893E-01
μοριακή μάζα DMSO ₂	94,135	g mol ⁻¹	0,00508	5,398E-05	10,62	0,05396	2,911E-03
μοριακή μάζα BTFMBA	258,117	g mol ⁻¹	0,00522	2,024E-05	-3,87	-0,02023	4,092E-04
αριθμός ¹ Η στο μόριο DSMO ₂	6	nucl/mol	0,00011	1,800E-05	-166,61	-0,01799	3,238E-04
αριθμός ¹ Η στο μόριο BFTMBA	3	nucl/mol	0,00005	1,800E-05	333,21	0,01799	3,238E-04
μάζα DMSO ₂	7,1	mg	0,00057	8,021E-05	-140,79	-0,08018	6,428E-03
μάζα BTFMBA	39	mg	0,00067	1,717E-05	25,63	0,01716	2,946E-04
συντελεστής διόρθωσης άνωσης	1,00001		0,00000	4,065E-06	999,63	0,00406	1,651E-05
καθαρότητα BTFMBA	999,59	mg g ⁻¹	0,26000	2,601E-04	1,00	0,26001	6,761E-02
καθαρότητα DMSO ₂							999,642
συνδυασμένη τυπική αβεβαιότητ	α						0,931
διευρυμένη αβεβαιότητα (k=2,31)							2,152

CCQM-P150 (NMIJ, LGC, NMIA)



measuring PAHs in tea – linking measurements to SI or an odyssey in metrological traceability!

Primary calibrant characterization: benzo[a]pyrene purity determination with quantitative ¹H NMR

model equation

$$P_{A} = \frac{I_{s}}{I_{Std}} \frac{n_{Std}}{n_{s}} \frac{M_{s}}{M_{std}} \frac{m_{Std}}{m} P_{std}$$

qNMR uncertainty budget							
uncertainty component	value	units	uncertainty	rel uncertainty	Ci	Ciui	squared CiUi
B[a]P integration signal	1,0000		0,0000	0,000E+00	965,658	0,0000	0,000E+00
DMSO ₂ integration signal	9,5584		0,0092	8,023E-04	-101,028	-0,9295	8,639E-01
B[a]P molar mass	252,3077	g mol ⁻¹	0,0045	1,782E-05	3,827	0,0172	2,962E-04
DMSO ₂ molar mass	94,1354	g mol ⁻¹	0,0052	5,548E-05	-10,258	-0,0536	2,871E-03
no of 1H atoms in DSMO ₂ signal (3,00 ppm)	6	at/int sign	0,0001	1,800E-05	160,943	0,0174	3,021E-04
no of 1H atoms in B[a]P signal (9,06 ppm)	2	at/int sign	0,0000	1,800E-05	-482,829	-0,0174	3,021E-04
B[a]P mass	7,7148	mg	0,0012	1,555E-04	-125,170	-0,1502	2,256E-02
DMSO ₂ mass	8,8590	mg	0,0012	1,355E-04	109,003	0,1308	1,711E-02
buoyancy correction factor	1,00001		0,0000	4,065E-06	965,647	0,0039	1,541E-05
DMSO ₂ purity	999,64	mg g ⁻¹	0,9124	9,127E-04	0,966	0,8814	7,768E-01
purity value (mg/g)							965,658
combined standard uncertainty (mg/g)							1,298
relative uncertainty (%)							0,134
expanded uncertainty (k=2,31) (mg/kg)							0,310

Calibration solutions preparation and characterization isotope dilution at exact matching measurement equation

The measurement equation is:

$$w_{A,S} = w_{A,C} \frac{m_{S,dil}}{m_{S,in}} \times \frac{m_{is,S}}{m_{D,S}} \times \frac{m_{A,C}}{m_{is,C}} \times \frac{R_S}{R_C}$$

where $w_{AS} = mass fraction of the analyte (B[a]A or B[a]P) in the sample, (µg/g)$

 $w_{A,C}$ = mass fraction of the analyte (B[a]A or B[a]P) in the calibration solution, ($\mu g/g$)

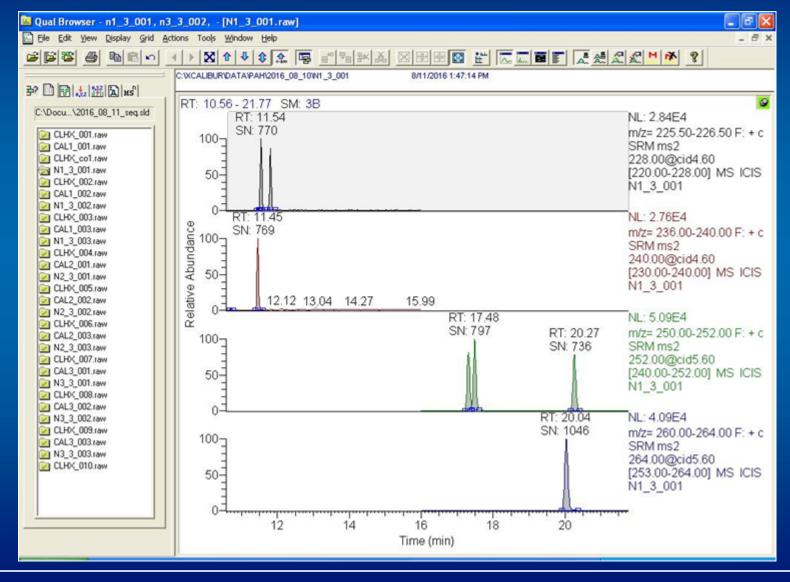
 $m_{S,in}$ = the mass of sample in the diluted sample (g)

 $m_{S,dil}$ = the total mass of the diluted sample (g)

 $m_{is,s}$ = mass of internal standard solution added to sample blend, (g)

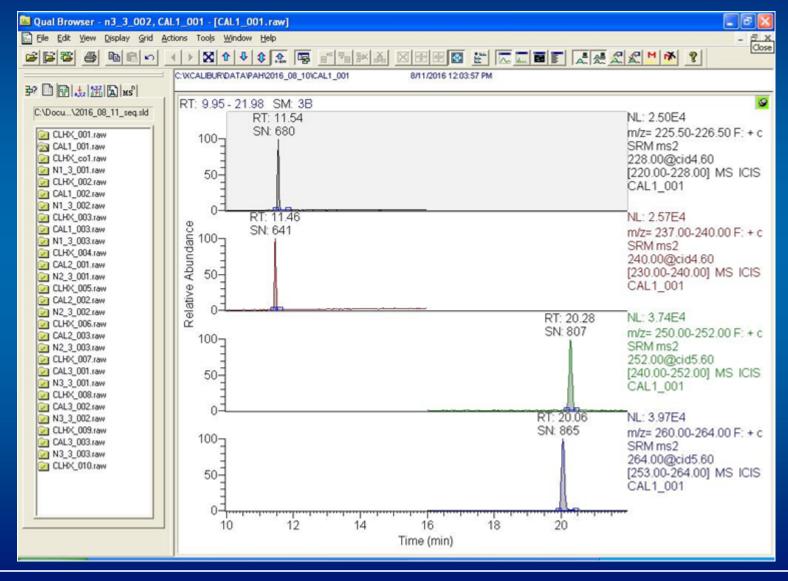
 $m_{0,s}$ = mass of diluted test material in sample blend, (g)

 $m_{A,C}$ = mass of the analyte (B[a]A or B[a]P) solution added to calibration blend, (g)


 $m_{is,C}$ = mass of internal standard solution added to calibration blend, (g)

R_s = measured peak area ratio of the selected ions in the sample blend

R_c = measured peak area ratio of the selected ions in the calibration blend



Typical chromatograms - K131 sample + IS

Typical chromatograms: EXHM calibrant + IS

BIPM JCGM 100:2008

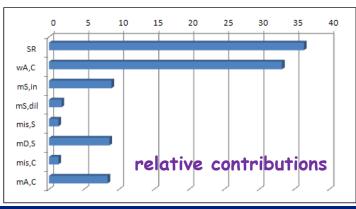
evaluation of uncertainty (JCGM 100:2008)

The equation used to estimate standard uncertainty is:

$$u(w_{BS}) = \sqrt{(s_R)^2 + \sum (C_j u(m_i))^2 + \sum (C_j u(R_i))^2 + (C_j u(w_{MC}))^2}$$

where s_R is the standard deviation under reproducibility conditions, n the number of determinations and C_i the sensitivity coefficients associated with each uncertainty component (masses, ion ratios and calibrant concentration). The uncertainty of the peak area ratios was considered to have been included in the estimation of method precision.

Uncertainty estimation was carried out according to JCGM 100: 2008. The standard uncertainties were combined as the sum of the squares of the product of the sensitivity coefficient (obtained by partial differentiation of the measurement equation) and standard uncertainty to give the square of the combined uncertainty. The square root of this value was multiplied by a coverage factor (95% confidence interval) from the t-distribution at the total effective degrees of freedom obtained from the Welch-Satterthwaite equation to give the expanded uncertainty.



Example - CCQM K131

all calibrants measured against NIST SRM 1647f via IDMS experiments characterisation and uncertainty budget for B[a]A in EXHM calibrant

		sensitivity	standrard	relative		
symbol	value	coefficient	uncertainty	uncertainty	$C_i \times u_i$	$(C_i \times u_i)^2$
S _R	0,646	1,000	0,00480	0,00742	0,0048	0,0000
w _{A,C}	5,160	0,125	0,03500	0,01200	0,0044	0,0000
$m_{\mathrm{S,in}}$	0,1500	-39,161	0,00003	0,00020	-0,0012	0,0000
$m_{\rm S,dil}$	1,5000	3,916	0,00006	0,00004	0,0002	0,0000
m is,S	0,1600	5,874	0,00003	0,00019	0,0002	0,0000
m _{D,S}	0,1450	-37,898	0,00003	0,00019	-0,0011	0,0000
m _{is,C}	0,1800	5,874	0,00003	0,00022	0,0002	0,0000
$m_{\rm A,C}$	0,1600	-36,713	0,00003	0,00019	-0,0011	0,0000
R _S	0,9990		considere	d to be include	d in the	
R _C	0,9900		estimatio	n of method pr	ecision	
	S _R W _{A,C} m _{S,in} m _{S,dil} m _{is,S} m _{D,S} m _{is,C} m _{A,C}	S _R 0,646 W _{A,C} 5,160 m _{S,in} 0,1500 m _{S,dil} 1,5000 m _{is,S} 0,1600 m _{D,S} 0,1450 m _{is,C} 0,1800 m _{A,C} 0,1600 R _S 0,9990	symbol value coefficient S _R 0,646 1,000 w _{A,C} 5,160 0,125 m _{S,in} 0,1500 -39,161 m _{S,dil} 1,5000 3,916 m _{is,S} 0,1600 5,874 m _{D,S} 0,1450 -37,898 m _{is,C} 0,1800 5,874 m _{A,C} 0,1600 -36,713 R _S 0,9990	symbol value coefficient uncertainty S R 0,646 1,000 0,00480 W A,C 5,160 0,125 0,03500 M s,in 0,1500 -39,161 0,00003 M s,dil 1,5000 3,916 0,00006 M is,S 0,1600 5,874 0,00003 M D,S 0,1450 -37,898 0,00003 M is,C 0,1800 5,874 0,00003 M A,C 0,1600 -36,713 0,00003 R S 0,9990 considered	symbol value coefficient uncertainty uncertainty S R 0,646 1,000 0,00480 0,00742 W A,C 5,160 0,125 0,03500 0,01200 M s,in 0,1500 -39,161 0,00003 0,00020 M s,dil 1,5000 3,916 0,00006 0,00004 M is,S 0,1600 5,874 0,00003 0,00019 M is,C 0,1800 5,874 0,00003 0,00022 M A,C 0,1600 -36,713 0,00003 0,00019 R s 0,9990 considered to be include	symbol value coefficient uncertainty uncertainty $C_1 \times u_1$ S_R 0,646 1,000 0,00480 0,00742 0,0048 $w_{A,C}$ 5,160 0,125 0,03500 0,01200 0,0044 $m_{S,in}$ 0,1500 -39,161 0,00003 0,00020 -0,0012 $m_{S,dil}$ 1,5000 3,916 0,00006 0,00004 0,0002 $m_{Is,S}$ 0,1600 5,874 0,00003 0,00019 -0,0011 $m_{Is,C}$ 0,1800 5,874 0,00003 0,00022 0,0002 $m_{A,C}$ 0,1600 -36,713 0,00003 0,00019 -0,0011 R_S 0,9990 considered to be included in the

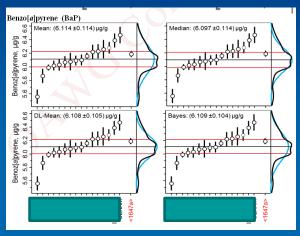
result (µg/g)	0,646
combined standard uncertainty (µg/g)	0,007
relative uncertainty (%)	1,05
effective degrees of freedom	20,7
coverage factor	2,09
expanded uncertainty (μg/kg)	0,014

relative uncertainty (%)

expanded uncertainty (k=2,31) (mg/kg)

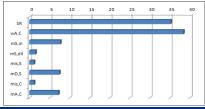
CHEMICAL METROLOGY LABORATORY
General Chemical State Laboratory
Hellenic Institute of Metrology

Track comparisons: capability of characterizing calibration solutions


primary analytical method q ¹H NMR

qNMR uncertainty budget							
uncertainty component	value	units	uncertainty	rel uncertainty	Ci	Ciui	squared CiUi
B[a]P integration signal	1,0000		0,0000	0,000E+00	965,658	0,0000	0,000E+00
DMSO ₂ integration signal	9,5584		0,0092	8,023E-04	-101,028	-0,9295	8,639E-01
B[a]P molar mass	252,3077	g mol ⁻¹	0,0045	1,782E-05	3,827	0,0172	2,962E-04
DMSO ₂ molar mass	94,1354	g mol ⁻¹	0,0052	5,548E-05	-10,258	-0,0536	2,871E-03
no of 1H atoms in DSMO ₂ signal (3,00 ppm)	6	at/int sign	0,0001	1,800E-05	160,943	0,0174	3,021E-04
no of 1H atoms in B[a]P signal (9,06 ppm)	2	at/int sign	0,0000	1,800E-05	-482,829	-0,0174	3,021E-04
B[a]P mass	7,7148	mg	0,0012	1,555E-04	-125,170	-0,1502	2,256E-02
DMSO ₂ mass	8,8590	mg	0,0012	1,355E-04	109,003	0,1308	1,711E-02
buoyancy correction factor	1,00001		0,0000	4,065E-06	965,647	0,0039	1,541E-05
DMSO ₂ purity	999,64	mg g ⁻¹	0,9124	9,127E-04	0,966	0,8814	7,768E-01
purity value (mg/g)							965,658
combined standard uncertainty (mg/g)							

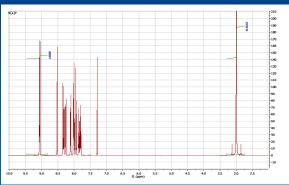
$P_{A} = \frac{I_{s}}{I_{Std}} \frac{n_{Std}}{n_{s}} \frac{M_{s}}{M_{std}} \frac{m_{Std}}{m} F$

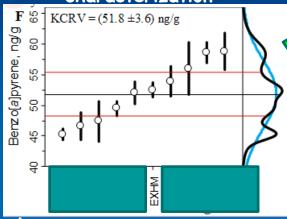

$$w_{A,S} = \ w_{A,C} \ \frac{m_{S,in}}{m_{S,dil}} \times \frac{m_{is,S}}{m_{D,S}} \times \frac{m_{A,C}}{m_{is,C}} \times \frac{R_S}{R_C}$$

CCQM-K131: PAHs in solutions

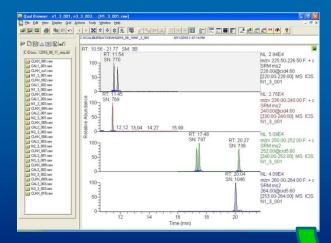
uncertainty component (typical values)			sensitivity	standrard	relative		
ancertainty component (typical railary)	symbol	value	coefficient	uncertainty	uncertainty	$C_i \times u_i$	$(C_i \times u_i)^2$
method precision	S _R	0,660	1,000	0,00536	0,00812	0,0054	0,0000
mass fraction of BaP in the NIST calibration solution, $(\mu g/g)$	w _{A,C}	6,220	0,106	0,05500	0,01200	0,0058	0,0000
the mass of sample in the diluted NIST sample (g)	$m_{\rm S,in}$	0,1500	-39,161	0,00003	0,00020	-0,0012	0,0000
the total mass of the diluted NIST sample (g)	m _{S,dil}	1,5000	3,916	0,00006	0,00004	0,0002	0,0000
mass of BaP-d $_{12}$ solution added to EXHM calibrant, (g)	m is,s	0,1600	5,874	0,00003	0,00019	0,0002	0,0000
mass of EXHM calibrant in sample blend, (g)	m D,S	0,1450	-37,898	0,00003	0,00019	-0,0011	0,0000
mass of NIST solution added to traceable blend, (g)	m is,C	0,1530	5,874	0,00003	0,00022	0,0002	0,0000
mass of BaP-d $_{12}$ solution added to traceable blend, (g)	m _{A,C}	0,1600	-36,713	0,00003	0,00019	-0,0011	0,0000
measured peak area ratio of the selected ions in the EXHM calibrant	Rs	1,0020		considered to be included in the			
measured peak area ratio of the selected ions in the traceable blend	Rc	0,9963		estimatio	n of method pr	ecision	

result (μg/g)	0,660
combined standard uncertainty (μg/g)	0,008
relative uncertainty (%)	1,24
effective degrees of freedom	20,3
coverage factor	2,09
expanded uncertainty (µg/kg)	0,017

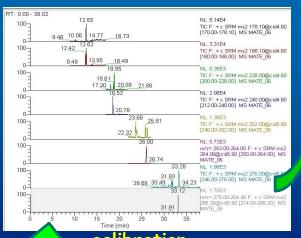

βαθμονόμηση ισοτοπική αραίωση σε ακριβή αντιστοίχηση


Track A comparisons: capability of characterizing matrix materials

primary characterization method q ¹H NMR



primary calibrant
benzo[a]pyrene


measurement comparison characterization

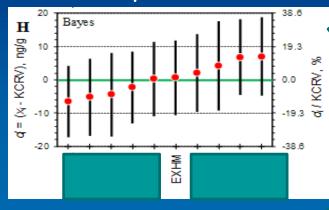
CCQM-K95.1: PAHs in tea

secondary calibrant
benzo[a]pyrene calibration solution

isotope dilution at exact matching

primary characterization method q ¹H NMR

qNMR uncertainty budget							
uncertainty component	value	units	uncertainty	rel uncertainty	Ci	Ciui	squared CiUi
B[a]P integration signal	1,0000		0,0000	0,000E+00	965,658	0,0000	0,000E+00
DMSO ₂ integration signal	9,5584		0,0092	8,023E-04	-101,028	-0,9295	8,639E-01
B[a]P molar mass	252,3077	g mol ⁻¹	0,0045	1,782E-05	3,827	0,0172	2,962E-04
DMSO ₂ molar mass	94,1354	g mol ⁻¹	0,0052	5,548E-05	-10,258	-0,0536	2,871E-03
no of 1H atoms in DSMO ₂ signal (3,00 ppm)	6	at/int sign	0,0001	1,800E-05	160,943	0,0174	3,021E-04
no of 1H atoms in B[a]P signal (9,06 ppm)	2	at/int sign	0,0000	1,800E-05	-482,829	-0,0174	3,021E-04
B[a]P mass	7,7148	mg	0,0012	1,555E-04	-125,170	-0,1502	2,256E-02
DMSO ₂ mass	8,8590	mg	0,0012	1,355E-04	109,003	0,1308	1,711E-02
buoyancy correction factor	1,00001		0,0000	4,065E-06	965,647	0,0039	1,541E-05
DMSO ₂ purity	999,64	mg g ⁻¹	0,9124	9,127E-04	0,966	0,8814	7,768E-01
purity value (mg/g)							965,658
combined standard uncertainty (mg/g)							1,298
relative uncertainty (%)							0,134
oa ded uncertainty (k=2,31) (mg/kg)							0,310


primary calibrant benzo[a]pyrene

rtainty component (typical values)	symbol	value	sensitivity coefficient	standrard uncertainty	relative uncertainty	Cixui	(C; x u;)
hod precision	S _R	0,660	1,000	0,00536	0,00812	0,0054	0,000
ass fraction of BaP in the NIST calibration solution, $(\mu g/g)$	w _{A,C}	6,220	0,106	0,05500	0,01200	0,0058	0,000
ne mass of sample in the diluted NIST sample (g)	m _{S,in}	0,1500	-39,161	0,00003	0,00020	-0,0012	0,000
the total mass of the diluted NIST sample (g)	m _{S,dill}	1,5000	3,916	0,00006	0,00004	0,0002	0,0000
mass of BaP- d_{12} solution added to EXHM calibrant, (g)	m is,s	0,1600	5,874	0,00003	0,00019	0,0002	0,0000
mass of EXHM calibrant in sample blend, (g)	m D,S	0,1450	-37,898	0,00003	0,00019	-0,0011	0,000
mass of NIST solution added to traceable blend, (g)	m is,C	0,1530	5,874	0,00003	0,00022	0,0002	0,000
mass of BaP-d $_{12}$ solution added to traceable blend, (g)	m A,C	0,1600	-36,713	0,00003	0,00019	-0,0011	0,000
measured peak area ratio of the selected ions in the EXHM calibrant	Rs	1,0020		considered to be included in the			
measured peak area ratio of the selected ions in the traceable blend	Rc	0,9963		estimatio	n of method pr	ecision	
		SR	0 5	10 15	20 25	30 35	40
result (µg/g)	0,660	wA.C					_
combined standard uncertainty (µg/g)	0,008	mS.in					_
relative uncertainty (%)	1,24		-				
effective degrees of freedom	20,3	mS,dil	-√II				
coverage factor	2,09	mis,S					
expanded uncertainty (μg/kg)	0,017	mD,S					
		mis,C	•				
A		mA,C					

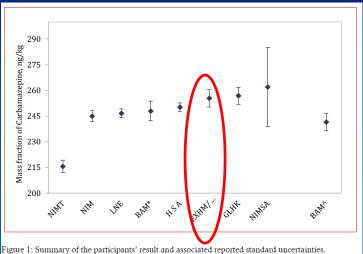
secondary calibrant benzo[a]pyrene calibration solution

CCQM-K95.1: PAHs in tea

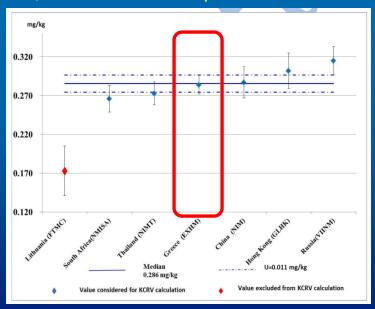
measurement comparison equivalence

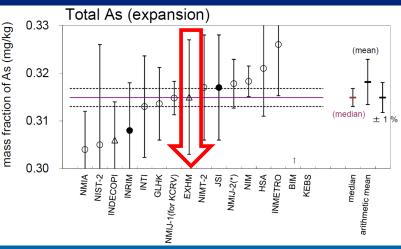
I. I. A.						
		sensitivity	standrard	relative		
uncertainty component	value	coefficient	uncertainty	uncertainty	$C_i \times u_i$	$(C_i \times u_i)^2$
method precision	52,49	1,0000	0,56	0,0107	0,5603	0,3140
mass fraction of B[a]P in the calibration solution, ($\mu g/kg$)	643,18	0,0816	11,61	0,0180	0,9473	0,8974
sample moisture content, (g/g)	0,04010	-54,6840	0,00018	0,0044	-0,0098	0,0001
recovery (%)	100,00	-0,5249	0,762	0,0076	-0,4000	0,1600
mass of B[a]P-d ₁₂ solution added to sample blend, (g)	0,16166	324,7057	0,00007	0,0004	0,0227	0,0005
mass of test material in sample blend, (g)	1,98492	-26,4450	0,00007	0,0000	-0,0019	0,0000
mass of B[a]P solution added to calibration blend, (g)	0,04084	1285,2879	0,00003	0,0007	0,0386	0,0015
mass of B[a]P-d ₁₂ solution added to calibration blend, (g)	0,04063	-1291,9311	0,00003	0,0007	-0,0388	0,0015
measured peak area ratio of the selected ions in the sample blend	1,0571	49,6558	consi	dered to be in	cluded in t	he
measured peak area ratio of the selected ions in the calibration blend	1,1047	-47,5178	estin	nation of meth	od precisi	on
result (ng/g)	52,49					
combined standard uncertainty (ng/g)	1,17	. 1	V. (. V.		R
relative standard uncertainty (%)	2,23	· (. = -	- × Vis,smp	'is,smp v d,c	al ^C d,cal ,	¹ tsmp _
effective degrees of freedom	20,4	$C_{d,\text{smp}} = \frac{1}{Rec}$	` m	^ V	al Cia aal '	` R
coverage factor	2,00		···a,si	np 'is,c	ai -is,cai	cal
expanded uncertainty (ng/g)	2,35					

calibration isotope dilution at exact matching



Traceability in reference materials


primary method 0,13% · Primary calibrant · weighing and solution preparation uncertainty 0,19% secondary calibrants · measuring equipment calibration 1,24% · measurement at exact matching · analytical determination · reference material characterization 2,23%



CCQM-K126 carbamazepine in surface water

Results

CCQM-K108 As in brown rice flour

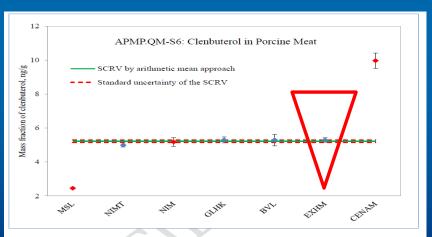
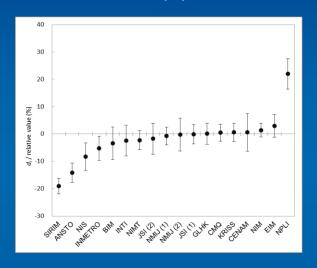
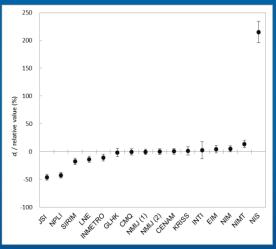


Figure 4: SCRV by arithmetic mean approach (green line) and its standard uncertainty (red dotted line) with participants' results and the associated reported standard uncertainties

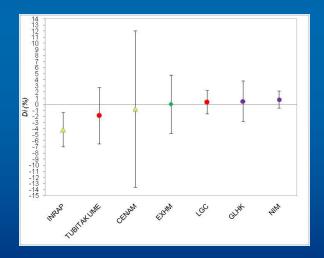
- Data included for SCRV calculation Data excluded from SCRV calculation
- APMP-QMS6 clenbuterol in porcine meat

CCQM-K103 melamine in milk powder



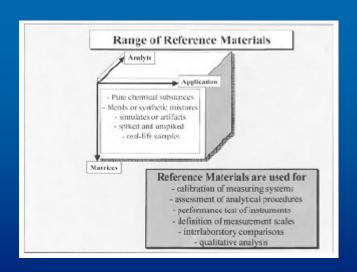

Track A comparisons: matrix materials

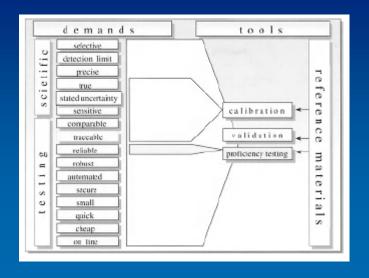
Determination of metals

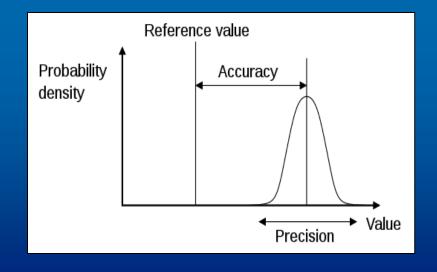

Zn in fishery products

Cd in meat

hexavalent Cr in water

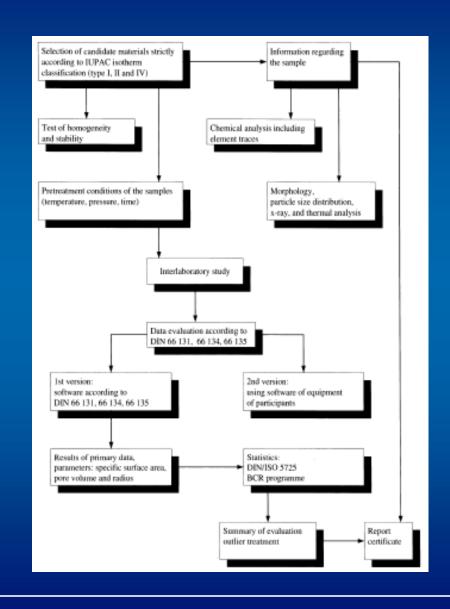


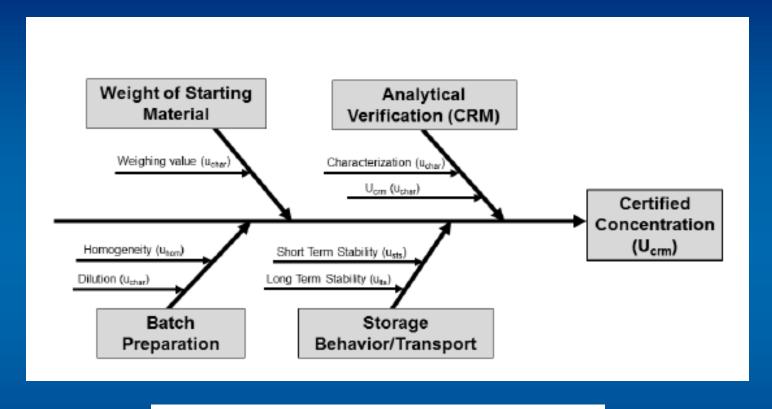




certified reference materials - uses

- trueness / recovery
- + calibration
- + quality control
- + proficiency testing items




Certified reference materials

- + planning
- + production
- + quality control
- + homogeneity
- + stability
- characterisation
- uncertainty
- + traceability
- certification report
- + certificate

reference materials - metrological characterization

$$x_{\text{CRM}} = x_{\text{char}} + \delta x_{\text{bb}} + \delta x_{\text{lts}} + \delta x_{\text{sts}}$$

$$u_{\text{CRM}} = \sqrt{u_{\text{char}}^2 + u_{\text{bb}}^2 + u_{\text{lts}}^2 + u_{\text{sts}}^2}$$

Hellenic CRMs

CHEMICAL METROLOGY LABORATORY (EXHM/GCSL-EIM)
GENERAL CHEMICAL STATE LABORATORY - HELLENIC METROLOGY INSTITUTE
CHEMICAL METROLOGY SERVICE, 16 TSOCHA STREET, 115 21 ATHENS, GREECE
tel: +30 210 64799136-8 fax:+30 210 6479914 emails metrology@gcsl.gr

CERTIFICATE OF ANALYSIS

HDA • - XXXXX "HRM name"

"brief title"				
Certified value 1) Uncertainty 2				
"property" in "units of measurement"				
"value"	± "meas unc."			
	Certified value ¹⁾ "property" in "units			

1) "brief description of the certification procedure". The certified value is traceable to the SI.

a) Estimated expanded uncertainty U with a coverage factor of k = "covfact", corresponding to a level of confidence of about "conflev", as defined in the Guide to the expression of uncertainty in measurement (GUM), ISO, 1995. Uncertainty contributions arising from characterisation as well as from homogeneity and stability testing have been taken into account.

The certified properties will be valid for "shelf life" beginning with the dispatch of the material from EXHM, this validity may be extended as further evidence of stability becomes available. The minimum sample intake is "minamount".

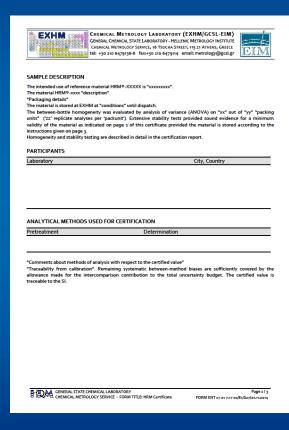
NOTE

Hellenic Reference Material HRM -XXXX was produced and certified under the responsibility of Epyacorpiao Xnjunkri, Merpokoyiac (EXHM/TXK-EIM) according to the principles laid down in the technical guidelines outlined in the Quality Manual, in accordance with the requirements of 150 Guide 34.

It is accepted as an HRM°, Athens, 20xx-xx-xx

Athens, 20xx-xx-xx

EXHM/FXK-EIM Reference Materials ΓΧΚ Chemical Metrology Service


(Head of EXHM)

(Head of Chemical Metrology Service)

GENERAL STATE CHEMICAL LABORATORY

CHEMICAL METROLOGY SERVICE - FORM TITLE: HRM Certifica

Page 1 / ; FORM ENT 27 01 7:17 02/Ε1/Δ27/01:11:2014

CHEMICAL METROLOGY LABORATORY (EXHM/GCSL-EIM)
GENERAL CHEMICAL STATE LABORATORY - HELLENIC METROLOGY INSTITUTE
CHEMICAL METROLOGY SERVICE, 16 TSOCHA STREET, 115 21 ATHENS, GREECE
tel: +30 210 6479136-8 Tax+30 210 6479114 email: metrology@gcsl.gr

SAFETY INFORMATION

"Safety info"

INSTRUCTIONS FOR USE

"Handling

To the best of our knowledge, the stability of the reference material is not affected by limited exposure funding to animate variety and use. However, EXM cannot be held responsible for any alterations of the material occurring during transportation to, and handling and storage at, the customer's premises, especially of oneed samples.

STORAGE

"Storage info".

LEGAL NOTICE

Neither EXHM, not its contractors or any person acting on their behalf:

(a) make any warranty or representation, express or implied, that the use of any information, material, apparatus, method or process disclosed in this document does not infining any privately owned intellectual property right; or (b) assume any liability with respect to, or for damages resulting from, the use of any information, material, apparatus, method or process disclosed in this document save for loss or damage arising solely and directly from EVHM negligency.

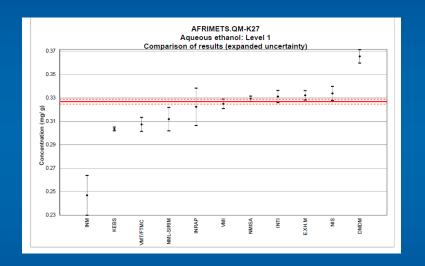
TECHNICAL REPORT

A detailed technical report (pdf file or paper copy; in English) describing the production, general characterisation as well as the analytical procedures applied and the treatment of the analytical data during certification of HRM®xxxxxx savailable on request from EXHM, HRM Supply of Reference Materials:

EXHM/FXK-EIM, Chemical Metrology Service, 16 Tsocha Street, 115 21 Athens, Greece www.EXHM.gcsl.gr

DAA GENERAL STATE CHEMICAL LABORATORY

Page 3 / 3 FORM ENT 27 01 7:17 02/Ε1/Δ27/01:11:2014

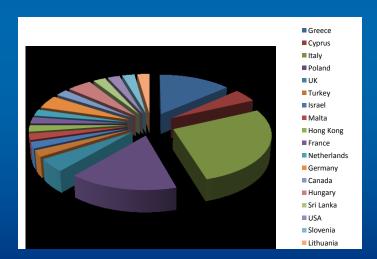


Hellenic CRMs

RMs for the calibration of digital pycnometers and alcohol breathing test devices

RMs for the calibration of equipment used in mobile labs for fuel control

RMs for the calibration of UV/Vis spectrophotometers



Proficiency testing

- •Among the services provided by the Chemical Metrology Service (GCSL)-GREECE are organization of interlaboratory proficiency testing schemes, under the SCHEMA logo (Scheme for CHEmical Measurement Assessment).
- •more than 15 PTs per year in environmental, industrial and agro-food fields
- is included in the EPTIS database (www.eptis.bam.de)

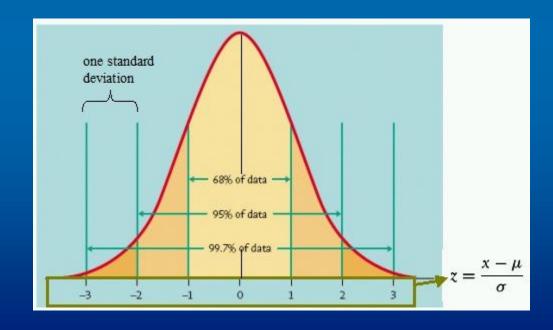
In SCHEMA PTs 30 08, migration of Cd & Pb from ceramics, more than 50 laboratories participated, the majority of National Reference Laboratories (NRLs) across Europe.

The number of participating laboratories increases in each campaign, in 2017 had over than 400 participants from 40 countries worldwide.

Participation in PTs: purposes and benefits

- → documentation of technical competence
- → comparative evaluation of performance
- + traceability (calibration laboratories)
- benchmarking of measurement uncertainty
- + training gaining experience
- + fulfilling the requirements of accreditation bodies
- + pointing out, investigating and solving technical problems

evaluation of performance (z-score)


$$z = \frac{x - \hat{X}}{\sigma_p}$$

one-off evaluation

 χ : laboratory result

 \widehat{X} : assigned value

 σ_p : target value of the standard deviation for proficiency assessment

evaluation of performance (z-score)

$$z = \frac{x - \hat{X}}{\sigma_p}$$

one-off evaluation

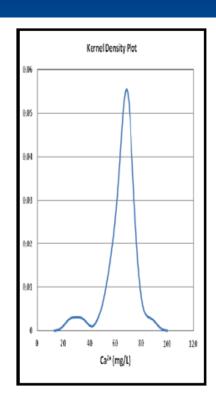
 χ : laboratory result

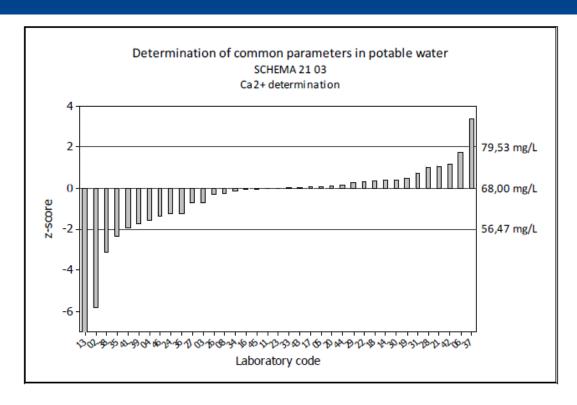
 \widehat{X} : assigned value

 σ_p : target value of the standard deviation for proficiency assessment

Evaluation using z-scores:

|z| ≤ 2, acceptable or satisfactory,


2< |z|≤3, questionable, triggers a warning signal


|z|>3, unacceptable/unsatisfactory, triggers corrective actions

Proficiency testing

Σχήμα 4. (A) Πυρηνοδιάγραμμα πυκνότητας (kernel density plot) των αποτελεσμάτων που υπέβαλαν τα εργαστήρια που συμμετείχαν στον προσδιορισμό Ca²⁺ σε πόσιμο νερό και (Β) αξιολόγηση της επίδοσης κάθε εργαστηρίου μέσω z-scores.μορφή αναλυτικών προσδιορισμών.

		2016-2017 PT programme	
PT code	substrate	parameters The parameters of	dispatch
SCHEMA 24 06	sewage	pH, total solids, COD, BOD ₅ , Cr (VI), heavy metals, TSS, TDS	9 th -10 th 2016
SCHEMA 90 06	edible oils	K ₂₃₂ , K ₂₇₀ , peroxide value, acidity, FAMEs, FAEs, wax	10 th 2016
SCHEMA 12 07	spirit drinks	alcoholic strength, volatile congeners, sugars	10 th 2016
SCHEMA 50 07	fuels	density, flash point, CFPP, sulfur, moisture kinematic viscosity, distillation characteristics, Pour Point	11 th 2016
SCHEMA 51 08	solid fuels (1/2)	calorific value, moisture, ash, VOCs, content (C, H, N, S)	12 th 2016
SCHEMA 70 06	honey	HMF, diastase, conductivity, moisture, sugars, thyme pollen	12 th 2016
SCHEMA 13 07	wine	alcoholic strength, acidity (volatile & total), SO ₂ (free & total), pH	1 ^{s†} 2017
SCHEMA 21 08	potable water	<u>anions</u> : F-, Cl-, NO ₂ -,NO ₃ -, SO ₄ 2- <u>cations</u> : Na+, K+, Ca ²⁺ , Mg ²⁺ total hardness, pH, conductivity, alkalinity	1st 2017
SCHEMA 15 03	beer	alcoholic strength, plato, density, fermentation parameters	2 nd 2017
SCHEMA 91 04	virgin olive oil	sensory evaluation	2 nd 2017
SCHEMA 63 05	flour	pesticide residues, acrylamide	3 rd 2017
SCHEMA 60 05	dairy products	moisture, fat, protein, ash, aflatoxin M1	3 rd 2017
SCHEMA 200 01	spectrophotometry	absorbance (AU), wavelength (nm)	3 rd -4 th 2017
SCHEMA 22 07	water	heavy metals: e.g. As, Cd, Cr, Pb, Fe, Mn, Al, Ni, Cu	4 th 2017
SCHEMA 92 02	olive oil	phthalate esters	5 th 2017
SCHEMA 80 04	foostuffs	preservatives (sorbic, benzoic, etc)	5 th 2017
SCHEMA 30 08	ceramics	Pb and Cd migration	6 th 2017
SCHEMA 62 05	fishery products	histamine, heavy metals	6 th 2017
SCHEMA 51 09	solid fuels (2/2)	calorific value, moisture, ash, VOCs, content (C, H, N, S)	6 th -7 th 2017

EXHM-UVVis-01: comparison in the calibration of UV/Vis spectrophotometers

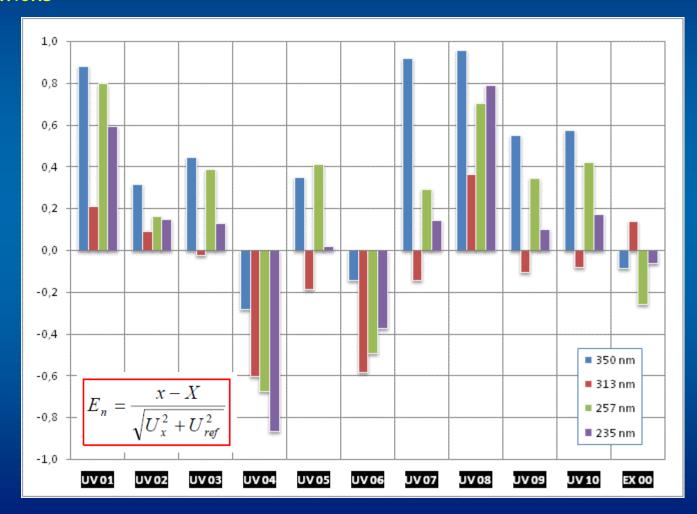
- + comparison protocol [ENT 27 01 6.09 01]
- + calibration results form [ENT 27 01 6.07 01]
- + uncertainty budget form [ENT 27 01 6.07 03]
- + performance data form [ENT 27 01 6.07 02]
- + traceability of measurement equipment form [ENT 27 01 6.05 02]
- + traceability of measurement form [ENT 27 01 6.05 01]
- + evaluation questionnaire [ENT 27 01 4.07 01]
- + hardware and software manuals (UV-Vis PE Lambda 650 spectrophotometer & UV WinLab)

EXHM-UVVis-01: transfer standard

manufacturer: Perkin Elmer

model: Lambda 650

serial number: 650N7020802


readability: 0, 1 mAU - 0,01 nm

En score

calibrations

Uncertainty in calibration of spectrophotometers: wavelength

$$E = I - WL_{ref}$$

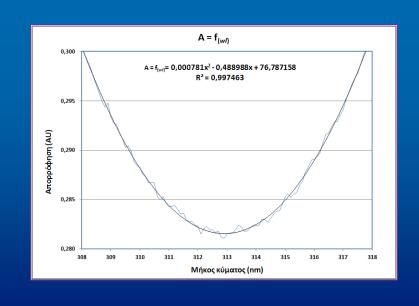
$$u_E^2 = u_I^2 + u_{WL_{ref}}^2$$

$$E = I - WL_{ref} \qquad u_E^2 = u_I^2 + u_{WL_{ref}}^2 \qquad I = I_{WL} + \delta I_{digWL} + \delta I_{repWL}$$

Uncertainty in calibration of spectrophotometers: absorbance

$$E = I - A_{ref}$$

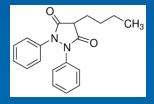
$$u_E^2 = u_I^2 + u_{A_{ref}}^2$$


$$E = I - A_{ref} \qquad u_E^2 = u_I^2 + u_{A_{ref}}^2 \qquad I = I_A - I_0 + \delta I_{digA} - \delta I_{dig0} + \delta I_{repA} + \delta I_{sl} + \delta I_{wl}$$

$$A_{ref} = A_N + \delta A_v + \delta A_{op} + \delta A_D + \delta A_T$$

$$f_{(wl)} = m_n w l^n + m_{n-1} w l^{n-1} + \dots + m_1 w l + m_o$$

$$\begin{split} u_{A,wl}^2 &= \frac{\partial f_{wl}}{\partial wl} u_{wl}^2 \\ \frac{\partial f_{(wl)}}{\partial wl} &= n \; m_n w l^{n-1} + (n-1) m_{n-1} w l^{n-2} + \dots + m_1 \end{split}$$


$$u_{sl} = \frac{\log(1 - r + 10^A \times r)}{\sqrt{3}}$$

EU: horse meat in the food chain (2013) - analytical case

- validation according to Commission Decision 657/2002
- + analyte: phenylbutazone
- linearity with matrix-matched standards at five levels
- + blank samples spiked at three levels (2,5 5 7,5 μ g/kg)

- + determination with LC-ID-MS/MS
- → two non-compliant samples out of 36

COMMISSION DECISION

of ►<u>C1</u> 14 August 2002 ◀

implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results

(notified under document number C(2002) 3044)

(Text with EEA relevance)

(2002/657/EC)

(OJ L 221, 17.8.2002, p. 8)

analyte quantification with isotope dilution (ID-LC/MS-MS)

+ analyte concentration in the sample

$$C_{d,\mathrm{smp}} \; = \frac{1}{Rec} \times \frac{V_{is,\mathrm{smp}} \; C_{is,\mathrm{smp}}}{m_{d,\mathrm{smp}}} \times \frac{V_{d,\mathrm{cal}} \; C_{d,\mathrm{cal}}}{V_{is,\mathrm{cal}} \; C_{is,\mathrm{cal}}} \times \frac{R_{\mathrm{smp}}}{R_{\mathrm{cal}}}$$

+ recovery

$$Rec = \frac{\overline{m}_{d, \text{obs}}}{m_{d, \text{spk}}} = \frac{\left(\frac{\overline{R}_{smp} - b}{a}\right) C_{is, rec} V_{is, spk}}{V_{d, \text{spk}} C_{d, \text{spk}}}$$

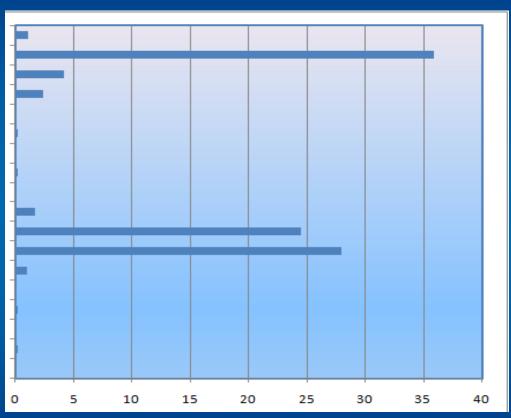
+ combined

$$C_{d,\mathrm{smp}} \; = \frac{\alpha \; V_{d,\mathrm{spk}} \, C_{d,\mathrm{spk}}}{\left(\bar{R}_{smp} \; - \; b\right) C_{is,spk} \; V_{is,spk}} \times \frac{V_{is,\mathrm{smp}} \; C_{is,\mathrm{smp}}}{m_{\mathrm{smp}}} \times \frac{V_{d,\mathrm{cal}} \; C_{d,\mathrm{cal}}}{V_{is,\mathrm{cal}} \; C_{is,\mathrm{cal}}} \times \frac{R_{\mathrm{smp}}}{R_{\mathrm{cal}}}$$

uncertainty

$$\Delta(C_{\rm d,smp}) = \sqrt{C_d^2 \frac{RSD_R^2}{n} + \sum_{i=1}^m \left(\frac{\partial C_d}{\partial x_i} \Delta_{x_i}\right)^2}$$

ID-LC/MS-MS: uncertainty budget


symbol	uncertainty component	value	units	standard uncertainty	relative uncertainty	sensitivity coefficient	$C_i \Delta x_i$	$(C_i \Delta x_i)^2$	contribution (%)	degrees of freedom	
	standard error	5,002	μg/kg	0,0353	0,0071	1,0000	0,0353	0,0012	1,0592	35	
	reproducibility conditions	5,002	μg/kg	0,2051	0,0410	1,0000	0,2051	0,0421	35,8110	12	
Rsmp	analyte/internal standard area ratio in the samle	0,500	-	0,0070	0,0140	10,0041	0,0700	0,0049	4,1755	18	
Rcal	analyte/internal standard area ratio in the calibrant	0,496	-	0,0052	0,0105	-10,0859	-0,0526	0,0028	2,360	14	
Vd,cal	volume of analyte solution in the calibrant	50	μL	0,1091	0,0022	0,1000	0,0109	0,0001	0,101	00	
Cd,cal	concentration of analyte solution in the calibrant	5	mg/L	0,0165	0,0033	1,0004	0,0165	0,0003	0,232	00	
Vis,cal	volume of IS solution in the calibrant	50	μL	0,1091	0,0022	-0,1000	-0,0109	0,0001	0,101	00	
Cis,cal	concentration of IS solution in the calibrant	5	mg/L	0,0165	0,0033	-1,0004	-0,0165	0,0003	0,232	00	
Vis,smp	volume of IS solution in the sample	100	μL	0,2182	0,0022	0,0500	0,0109	0,0001	0,101	00	
Cis,smp	concentration of IS solution in the sample	0,250	mg/L	0,0022	0,0089	20,0081	0,0444	0,0020	1,678	00	
Rvld	average analyte/IS area ratio in the validation level	0,480	-	0,0187	0,0390	-9,0714	-0,1696	0,0288	24,505	5	
a	slope of the calibration curve	0,547	-	0,0198	0,0362	9,1418	0,1812	0,0328	27,945	13	
ь	intercept of the validation curve	-0,072	-	0,0037	0,0520	9,0714	0,0339	0,0011	0,978	13	
Vd,spk	analyte solution volume in the spiking solution	50	μL	0,1091	0,0022	0,1000	0,0109	0,0001	0,101	00	
Cd,spk	analyte solution concentration in the spiking solution	5	mg/L	0,0165	0,0033	1,0004	0,0165	0,0003	0,232	00	
Cis,spk	internal standard solution volume in the spiking solution	50	μL	0,1091	0,0022	-0,1000	-0,0109	0,0001	0,101	00	
Vis,spk	internal standard solution concentration in the spiking solution	5	mg/L	0,0165	0,0033	-1,0004	-0,0165	0,0003	0,232	00	
m	sample mass	5	g	0,0080	0,0016	-1,0004	-0,0080	0,0001	0,055	∞	
Cd,smp	analyte concentration in the sample	5,002	μg/kg								
Cu,sinp	combined standard uncertainty		μg/kg		α V ₁₋₁ C ₁₋₁ V ₁₋₁ C ₁₋₁ V ₁₋₁ C					R	
	relative uncertainty	0,343 6,851	(%)			d,spk ^U d,spk	v ' ls,si	mp ^U is,smp	√d,cal od,cal	· V — mp	
	effective degrees of freedom	34,7	(70)	∪d,sr	$C_{d,\text{smp}} = \frac{1}{(\bar{R}_{\text{smp}} - h)C_{\text{is orb}} V_{\text{is orb}}} \times \frac{1}{m_{\text{smp}}} \times \frac{1}{V_{\text{is orb}} C_{\text{is}}}$						
	k (for 95% confidence level)	2,032			(N_{smp})	U Juis,spk Vis,s	pk	· · · smp	'is,cal 'is,cal	rcal	
	expanded uncertainty	0,696	μg/kg								
	entrance despessions:	0,070	r6**8								

relative contribution of the uncertainty components

symbol	uncertainty component
	standard error
	reproducibility conditions
Rsmp	analyte/internal standard area ratio in the samle
Rcal	analyte/internal standard area ratio in the calibrant
Vd,cal	volume of analyte solution in the calibrant
Cd,cal	concentration of analyte solution in the calibrant
Vis,cal	volume of IS solution in the calibrant
Cis,cal	concentration of IS solution in the calibrant
Vis,smp	volume of IS solution in the sample
Cis,smp	concentration of IS solution in the sample
Rvld	average analyte recovery
a	slope of the calibration curve
Ъ	intercept of the validation curve
Vd,spk	analyte solution volume in the spiking solution
Cd,spk	analyte solution concentration in the spiking solution
Cis,spk	internal standard solution volume in the spiking solution
Vis,spk	internal standard solution concentration in the spiking solution
m	sample mass

$$C_{d,\mathrm{smp}} \; = \frac{\alpha \; V_{d,\mathrm{spk}} \; C_{d,\mathrm{spk}}}{\left(\bar{R}_{smp} \; - \; b\right) C_{is,spk} \; V_{is,spk}} \times \frac{V_{is,\mathrm{smp}} \; C_{is,\mathrm{smp}}}{m_{\mathrm{smp}}} \times \frac{V_{d,\mathrm{cal}} \; C_{d,\mathrm{cal}}}{V_{is,\mathrm{cal}} \; C_{is,\mathrm{cal}}} \times \frac{R_{\mathrm{smp}}}{R_{\mathrm{cal}}}$$

relative contribution of the uncertainty components

Chemical entity			PHENYLBUT	TAZONE											
calibration curve data (solvent)										0,900					
		:		:						0,800					
concentration level	residue concentration	in standard concentration	residue		concentration ratio	response ratio				0,700					
LO 001	0	5	response	response	0,000	0,000				0,600				*	
_	0	5			-	-	zero inc	aludad	i te	0,500					
L0_002	2,50	5	13595520	58000284	0,000	0,000 0,234		0,4298	Se	0,400					
L1_001 L1 002		5			0,500		slope	-	<u> </u>	0.300					
	2,50	5	14021069	57872435		0,242	intercept	0,0195	ž	0.200					
L2_001	3,75		20604795	55437878	0,750	0,372	RSQ	0,9925		· —					
L2_002	3,75	5	20585495	56720035	0,750	0,363		-111		0,100					
L3_001	5,00	5	22811948	48302565	1,000	0,472	zero exc			0,000	200 0 400	0.000 0.000	1 000 1	200 1 400	1.000
L3_002	5,00	5	21789129	47407562	1,000	0,460	slope	0,3986		-0,100 ^{0,000}	1,200 0,400	concentratio		,200 1,400	1,000
L4_001	6,25	5	28903437	51656461	1,250	0,560	intercept	0,0546				concentratio			
L4_002	6,25	5	28230301	52539168	1,250	0,537	RSQ	0,9903							
L5_001	7,50	5	34725391	52833622	1,500	0,657									
L5_002	7,50	5	33373269	52566266	1,500	0,635						EPEATABILIT		*****	
										LEVEL	AVERAGE	RECOVERY	SDr	%RSDr	
		calibration curve	data (matrix	matched)						(mg/kg)	(mg/kg)	(%)	(mg/kg)	(%)	
							REGRESSIO	N RESULTS		2,50	2,48	99,1	0,24	9,82	
concentration	residue	in standard	residue	in standard	concentration	response			SET no1	5,00	4,98	99,7	0,20	3,94	
level	concentration	concentration	response	response	ratio	ratio				7,50	7,05	94,0	0,44	6,29	
MM0_001	0	5			0,000	0,000									
MM0_002	0	5			0,000	0,000	zero ind	cluded		2,50	2,73	109,3	0,27	9,73	
MM0_003	0	5			0,000	0,000	slope	0,5060	SET no2	5,00	5,14	102,7	0,31	6,02	
MM1_001	2,50	5	6132131	29303506	0,500	0,209	intercept	-0,0257		7,50	6,99	93,1	0,64	9,13	
MM1_002	2,50	5	6143809	28051383	0,500	0,219	RSQ	0,9926							
MM1_003	2,50	5	5736678	26233683	0,500	0,219				2,50	2,55	102,1	0,45	17,49	
MM2_001	3,75	5	10076506	32961116	0,750	0,306	zero exc	cluded	SET no3	5,00	5,05	100,9	0,60	11,83	
MM2_002	3,75	5	10052962	31538455	0,750	0,319	slope	0,5471		7,50	7,12	94,9	0,21	2,91	
MM2_003	3,75	5	9758642	29455709	0,750	0,331	intercept	-0,0719							
MM3_001	5,00	5	16789053	35456831	1,000	0,474	RSQ	0,9949			RE	PRODUCIBILI	ТҮ		
MM3 002	5,00	5	16037632	33213672	1,000	0,483			LEVEL	AVERAGE	RECOVERY	SDr	%RSDr	UNCRT	RELEXPU
MM3_003	5,00	5	16771708	34781924	1,000	0,482			(mg/kg)	(mg/kg)	(%)	(mg/kg)	(%)	(mg/kg)	(k=2, %)
MM4_001	6,25	5	23861725	38671827	1,250	0,617	AVERAGE		2,50	2,53	101,1	0,31	12,09	0,31	24,61
MM4 002	6,25	5	24721073	40995360	1,250	0,603	MATRIX	17,73%	5,00	4,99	99,8	0,44	8,73	0,44	17,57
MM4 003	6,25	5	23827627	39607487	1,250	0,602	EFFECT		7,50	7,04	93,8	0,51	7,25	0,51	14,58
MM5 001	7,50	5	52371204	70435996	1,500	0,744			7,2						
MM5 002	7,50	5	56161933	74210160	1,500	0,757				CCa	1,138		CCb	1,574	
MM5 003	7,50	5	56723505	74113793	1,500	0,765									

EXHM and the mole metrology market

GCSL laboratories and IAPR
Public service labs (Ministry of Rural Development & Food)
Public utility services (PPC, PEWS, etc)
Greek Army
University laboratories
Hospital and clinical laboratories
Calibration laboratories

around 500 customers

